Step |
Hyp |
Ref |
Expression |
1 |
|
imor |
|- ( ( N =/= 0 -> N < M ) <-> ( -. N =/= 0 \/ N < M ) ) |
2 |
|
0re |
|- 0 e. RR |
3 |
|
nn0re |
|- ( M e. NN0 -> M e. RR ) |
4 |
3
|
adantr |
|- ( ( M e. NN0 /\ N e. NN0 ) -> M e. RR ) |
5 |
|
ltnle |
|- ( ( 0 e. RR /\ M e. RR ) -> ( 0 < M <-> -. M <_ 0 ) ) |
6 |
2 4 5
|
sylancr |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( 0 < M <-> -. M <_ 0 ) ) |
7 |
|
nn0le0eq0 |
|- ( M e. NN0 -> ( M <_ 0 <-> M = 0 ) ) |
8 |
7
|
notbid |
|- ( M e. NN0 -> ( -. M <_ 0 <-> -. M = 0 ) ) |
9 |
8
|
adantr |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( -. M <_ 0 <-> -. M = 0 ) ) |
10 |
6 9
|
bitrd |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( 0 < M <-> -. M = 0 ) ) |
11 |
|
df-ne |
|- ( M =/= 0 <-> -. M = 0 ) |
12 |
10 11
|
bitr4di |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( 0 < M <-> M =/= 0 ) ) |
13 |
12
|
anbi2d |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( -. N =/= 0 /\ 0 < M ) <-> ( -. N =/= 0 /\ M =/= 0 ) ) ) |
14 |
|
nne |
|- ( -. N =/= 0 <-> N = 0 ) |
15 |
|
breq1 |
|- ( N = 0 -> ( N < M <-> 0 < M ) ) |
16 |
14 15
|
sylbi |
|- ( -. N =/= 0 -> ( N < M <-> 0 < M ) ) |
17 |
16
|
biimpar |
|- ( ( -. N =/= 0 /\ 0 < M ) -> N < M ) |
18 |
13 17
|
syl6bir |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( -. N =/= 0 /\ M =/= 0 ) -> N < M ) ) |
19 |
18
|
expd |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( -. N =/= 0 -> ( M =/= 0 -> N < M ) ) ) |
20 |
|
ax-1 |
|- ( N < M -> ( M =/= 0 -> N < M ) ) |
21 |
|
jaob |
|- ( ( ( -. N =/= 0 \/ N < M ) -> ( M =/= 0 -> N < M ) ) <-> ( ( -. N =/= 0 -> ( M =/= 0 -> N < M ) ) /\ ( N < M -> ( M =/= 0 -> N < M ) ) ) ) |
22 |
19 20 21
|
sylanblrc |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( -. N =/= 0 \/ N < M ) -> ( M =/= 0 -> N < M ) ) ) |
23 |
1 22
|
syl5bi |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( N =/= 0 -> N < M ) -> ( M =/= 0 -> N < M ) ) ) |
24 |
|
nn0ge0 |
|- ( N e. NN0 -> 0 <_ N ) |
25 |
24
|
adantl |
|- ( ( M e. NN0 /\ N e. NN0 ) -> 0 <_ N ) |
26 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
27 |
|
lelttr |
|- ( ( 0 e. RR /\ N e. RR /\ M e. RR ) -> ( ( 0 <_ N /\ N < M ) -> 0 < M ) ) |
28 |
2 27
|
mp3an1 |
|- ( ( N e. RR /\ M e. RR ) -> ( ( 0 <_ N /\ N < M ) -> 0 < M ) ) |
29 |
26 3 28
|
syl2anr |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( 0 <_ N /\ N < M ) -> 0 < M ) ) |
30 |
25 29
|
mpand |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( N < M -> 0 < M ) ) |
31 |
30 12
|
sylibd |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( N < M -> M =/= 0 ) ) |
32 |
31
|
imim2d |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( N =/= 0 -> N < M ) -> ( N =/= 0 -> M =/= 0 ) ) ) |
33 |
23 32
|
jcad |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( N =/= 0 -> N < M ) -> ( ( M =/= 0 -> N < M ) /\ ( N =/= 0 -> M =/= 0 ) ) ) ) |
34 |
|
pm3.34 |
|- ( ( ( M =/= 0 -> N < M ) /\ ( N =/= 0 -> M =/= 0 ) ) -> ( N =/= 0 -> N < M ) ) |
35 |
33 34
|
impbid1 |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( N =/= 0 -> N < M ) <-> ( ( M =/= 0 -> N < M ) /\ ( N =/= 0 -> M =/= 0 ) ) ) ) |
36 |
|
con34b |
|- ( ( M = 0 -> N = 0 ) <-> ( -. N = 0 -> -. M = 0 ) ) |
37 |
|
df-ne |
|- ( N =/= 0 <-> -. N = 0 ) |
38 |
37 11
|
imbi12i |
|- ( ( N =/= 0 -> M =/= 0 ) <-> ( -. N = 0 -> -. M = 0 ) ) |
39 |
36 38
|
bitr4i |
|- ( ( M = 0 -> N = 0 ) <-> ( N =/= 0 -> M =/= 0 ) ) |
40 |
39
|
anbi2i |
|- ( ( ( M =/= 0 -> N < M ) /\ ( M = 0 -> N = 0 ) ) <-> ( ( M =/= 0 -> N < M ) /\ ( N =/= 0 -> M =/= 0 ) ) ) |
41 |
35 40
|
bitr4di |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( N =/= 0 -> N < M ) <-> ( ( M =/= 0 -> N < M ) /\ ( M = 0 -> N = 0 ) ) ) ) |