| Step |
Hyp |
Ref |
Expression |
| 1 |
|
algcvga.1 |
|- F : S --> S |
| 2 |
|
algcvga.2 |
|- R = seq 0 ( ( F o. 1st ) , ( NN0 X. { A } ) ) |
| 3 |
|
algcvga.3 |
|- C : S --> NN0 |
| 4 |
|
algcvga.4 |
|- ( z e. S -> ( ( C ` ( F ` z ) ) =/= 0 -> ( C ` ( F ` z ) ) < ( C ` z ) ) ) |
| 5 |
|
algcvga.5 |
|- N = ( C ` A ) |
| 6 |
|
algfx.6 |
|- ( z e. S -> ( ( C ` z ) = 0 -> ( F ` z ) = z ) ) |
| 7 |
3
|
ffvelcdmi |
|- ( A e. S -> ( C ` A ) e. NN0 ) |
| 8 |
5 7
|
eqeltrid |
|- ( A e. S -> N e. NN0 ) |
| 9 |
8
|
nn0zd |
|- ( A e. S -> N e. ZZ ) |
| 10 |
|
uzval |
|- ( N e. ZZ -> ( ZZ>= ` N ) = { z e. ZZ | N <_ z } ) |
| 11 |
10
|
eleq2d |
|- ( N e. ZZ -> ( K e. ( ZZ>= ` N ) <-> K e. { z e. ZZ | N <_ z } ) ) |
| 12 |
11
|
pm5.32i |
|- ( ( N e. ZZ /\ K e. ( ZZ>= ` N ) ) <-> ( N e. ZZ /\ K e. { z e. ZZ | N <_ z } ) ) |
| 13 |
|
fveqeq2 |
|- ( m = N -> ( ( R ` m ) = ( R ` N ) <-> ( R ` N ) = ( R ` N ) ) ) |
| 14 |
13
|
imbi2d |
|- ( m = N -> ( ( A e. S -> ( R ` m ) = ( R ` N ) ) <-> ( A e. S -> ( R ` N ) = ( R ` N ) ) ) ) |
| 15 |
|
fveqeq2 |
|- ( m = k -> ( ( R ` m ) = ( R ` N ) <-> ( R ` k ) = ( R ` N ) ) ) |
| 16 |
15
|
imbi2d |
|- ( m = k -> ( ( A e. S -> ( R ` m ) = ( R ` N ) ) <-> ( A e. S -> ( R ` k ) = ( R ` N ) ) ) ) |
| 17 |
|
fveqeq2 |
|- ( m = ( k + 1 ) -> ( ( R ` m ) = ( R ` N ) <-> ( R ` ( k + 1 ) ) = ( R ` N ) ) ) |
| 18 |
17
|
imbi2d |
|- ( m = ( k + 1 ) -> ( ( A e. S -> ( R ` m ) = ( R ` N ) ) <-> ( A e. S -> ( R ` ( k + 1 ) ) = ( R ` N ) ) ) ) |
| 19 |
|
fveqeq2 |
|- ( m = K -> ( ( R ` m ) = ( R ` N ) <-> ( R ` K ) = ( R ` N ) ) ) |
| 20 |
19
|
imbi2d |
|- ( m = K -> ( ( A e. S -> ( R ` m ) = ( R ` N ) ) <-> ( A e. S -> ( R ` K ) = ( R ` N ) ) ) ) |
| 21 |
|
eqidd |
|- ( A e. S -> ( R ` N ) = ( R ` N ) ) |
| 22 |
21
|
a1i |
|- ( N e. ZZ -> ( A e. S -> ( R ` N ) = ( R ` N ) ) ) |
| 23 |
10
|
eleq2d |
|- ( N e. ZZ -> ( k e. ( ZZ>= ` N ) <-> k e. { z e. ZZ | N <_ z } ) ) |
| 24 |
23
|
pm5.32i |
|- ( ( N e. ZZ /\ k e. ( ZZ>= ` N ) ) <-> ( N e. ZZ /\ k e. { z e. ZZ | N <_ z } ) ) |
| 25 |
|
eluznn0 |
|- ( ( N e. NN0 /\ k e. ( ZZ>= ` N ) ) -> k e. NN0 ) |
| 26 |
8 25
|
sylan |
|- ( ( A e. S /\ k e. ( ZZ>= ` N ) ) -> k e. NN0 ) |
| 27 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 28 |
|
0zd |
|- ( A e. S -> 0 e. ZZ ) |
| 29 |
|
id |
|- ( A e. S -> A e. S ) |
| 30 |
1
|
a1i |
|- ( A e. S -> F : S --> S ) |
| 31 |
27 2 28 29 30
|
algrp1 |
|- ( ( A e. S /\ k e. NN0 ) -> ( R ` ( k + 1 ) ) = ( F ` ( R ` k ) ) ) |
| 32 |
26 31
|
syldan |
|- ( ( A e. S /\ k e. ( ZZ>= ` N ) ) -> ( R ` ( k + 1 ) ) = ( F ` ( R ` k ) ) ) |
| 33 |
27 2 28 29 30
|
algrf |
|- ( A e. S -> R : NN0 --> S ) |
| 34 |
33
|
ffvelcdmda |
|- ( ( A e. S /\ k e. NN0 ) -> ( R ` k ) e. S ) |
| 35 |
26 34
|
syldan |
|- ( ( A e. S /\ k e. ( ZZ>= ` N ) ) -> ( R ` k ) e. S ) |
| 36 |
1 2 3 4 5
|
algcvga |
|- ( A e. S -> ( k e. ( ZZ>= ` N ) -> ( C ` ( R ` k ) ) = 0 ) ) |
| 37 |
36
|
imp |
|- ( ( A e. S /\ k e. ( ZZ>= ` N ) ) -> ( C ` ( R ` k ) ) = 0 ) |
| 38 |
|
fveqeq2 |
|- ( z = ( R ` k ) -> ( ( C ` z ) = 0 <-> ( C ` ( R ` k ) ) = 0 ) ) |
| 39 |
|
fveq2 |
|- ( z = ( R ` k ) -> ( F ` z ) = ( F ` ( R ` k ) ) ) |
| 40 |
|
id |
|- ( z = ( R ` k ) -> z = ( R ` k ) ) |
| 41 |
39 40
|
eqeq12d |
|- ( z = ( R ` k ) -> ( ( F ` z ) = z <-> ( F ` ( R ` k ) ) = ( R ` k ) ) ) |
| 42 |
38 41
|
imbi12d |
|- ( z = ( R ` k ) -> ( ( ( C ` z ) = 0 -> ( F ` z ) = z ) <-> ( ( C ` ( R ` k ) ) = 0 -> ( F ` ( R ` k ) ) = ( R ` k ) ) ) ) |
| 43 |
42 6
|
vtoclga |
|- ( ( R ` k ) e. S -> ( ( C ` ( R ` k ) ) = 0 -> ( F ` ( R ` k ) ) = ( R ` k ) ) ) |
| 44 |
35 37 43
|
sylc |
|- ( ( A e. S /\ k e. ( ZZ>= ` N ) ) -> ( F ` ( R ` k ) ) = ( R ` k ) ) |
| 45 |
32 44
|
eqtrd |
|- ( ( A e. S /\ k e. ( ZZ>= ` N ) ) -> ( R ` ( k + 1 ) ) = ( R ` k ) ) |
| 46 |
45
|
eqeq1d |
|- ( ( A e. S /\ k e. ( ZZ>= ` N ) ) -> ( ( R ` ( k + 1 ) ) = ( R ` N ) <-> ( R ` k ) = ( R ` N ) ) ) |
| 47 |
46
|
biimprd |
|- ( ( A e. S /\ k e. ( ZZ>= ` N ) ) -> ( ( R ` k ) = ( R ` N ) -> ( R ` ( k + 1 ) ) = ( R ` N ) ) ) |
| 48 |
47
|
expcom |
|- ( k e. ( ZZ>= ` N ) -> ( A e. S -> ( ( R ` k ) = ( R ` N ) -> ( R ` ( k + 1 ) ) = ( R ` N ) ) ) ) |
| 49 |
48
|
adantl |
|- ( ( N e. ZZ /\ k e. ( ZZ>= ` N ) ) -> ( A e. S -> ( ( R ` k ) = ( R ` N ) -> ( R ` ( k + 1 ) ) = ( R ` N ) ) ) ) |
| 50 |
24 49
|
sylbir |
|- ( ( N e. ZZ /\ k e. { z e. ZZ | N <_ z } ) -> ( A e. S -> ( ( R ` k ) = ( R ` N ) -> ( R ` ( k + 1 ) ) = ( R ` N ) ) ) ) |
| 51 |
50
|
a2d |
|- ( ( N e. ZZ /\ k e. { z e. ZZ | N <_ z } ) -> ( ( A e. S -> ( R ` k ) = ( R ` N ) ) -> ( A e. S -> ( R ` ( k + 1 ) ) = ( R ` N ) ) ) ) |
| 52 |
14 16 18 20 22 51
|
uzind3 |
|- ( ( N e. ZZ /\ K e. { z e. ZZ | N <_ z } ) -> ( A e. S -> ( R ` K ) = ( R ` N ) ) ) |
| 53 |
12 52
|
sylbi |
|- ( ( N e. ZZ /\ K e. ( ZZ>= ` N ) ) -> ( A e. S -> ( R ` K ) = ( R ` N ) ) ) |
| 54 |
53
|
ex |
|- ( N e. ZZ -> ( K e. ( ZZ>= ` N ) -> ( A e. S -> ( R ` K ) = ( R ` N ) ) ) ) |
| 55 |
54
|
com3r |
|- ( A e. S -> ( N e. ZZ -> ( K e. ( ZZ>= ` N ) -> ( R ` K ) = ( R ` N ) ) ) ) |
| 56 |
9 55
|
mpd |
|- ( A e. S -> ( K e. ( ZZ>= ` N ) -> ( R ` K ) = ( R ` N ) ) ) |