Step |
Hyp |
Ref |
Expression |
1 |
|
alginv.1 |
|- R = seq 0 ( ( F o. 1st ) , ( NN0 X. { A } ) ) |
2 |
|
alginv.2 |
|- F : S --> S |
3 |
|
alginv.3 |
|- ( x e. S -> ( I ` ( F ` x ) ) = ( I ` x ) ) |
4 |
|
2fveq3 |
|- ( z = 0 -> ( I ` ( R ` z ) ) = ( I ` ( R ` 0 ) ) ) |
5 |
4
|
eqeq1d |
|- ( z = 0 -> ( ( I ` ( R ` z ) ) = ( I ` ( R ` 0 ) ) <-> ( I ` ( R ` 0 ) ) = ( I ` ( R ` 0 ) ) ) ) |
6 |
5
|
imbi2d |
|- ( z = 0 -> ( ( A e. S -> ( I ` ( R ` z ) ) = ( I ` ( R ` 0 ) ) ) <-> ( A e. S -> ( I ` ( R ` 0 ) ) = ( I ` ( R ` 0 ) ) ) ) ) |
7 |
|
2fveq3 |
|- ( z = k -> ( I ` ( R ` z ) ) = ( I ` ( R ` k ) ) ) |
8 |
7
|
eqeq1d |
|- ( z = k -> ( ( I ` ( R ` z ) ) = ( I ` ( R ` 0 ) ) <-> ( I ` ( R ` k ) ) = ( I ` ( R ` 0 ) ) ) ) |
9 |
8
|
imbi2d |
|- ( z = k -> ( ( A e. S -> ( I ` ( R ` z ) ) = ( I ` ( R ` 0 ) ) ) <-> ( A e. S -> ( I ` ( R ` k ) ) = ( I ` ( R ` 0 ) ) ) ) ) |
10 |
|
2fveq3 |
|- ( z = ( k + 1 ) -> ( I ` ( R ` z ) ) = ( I ` ( R ` ( k + 1 ) ) ) ) |
11 |
10
|
eqeq1d |
|- ( z = ( k + 1 ) -> ( ( I ` ( R ` z ) ) = ( I ` ( R ` 0 ) ) <-> ( I ` ( R ` ( k + 1 ) ) ) = ( I ` ( R ` 0 ) ) ) ) |
12 |
11
|
imbi2d |
|- ( z = ( k + 1 ) -> ( ( A e. S -> ( I ` ( R ` z ) ) = ( I ` ( R ` 0 ) ) ) <-> ( A e. S -> ( I ` ( R ` ( k + 1 ) ) ) = ( I ` ( R ` 0 ) ) ) ) ) |
13 |
|
2fveq3 |
|- ( z = K -> ( I ` ( R ` z ) ) = ( I ` ( R ` K ) ) ) |
14 |
13
|
eqeq1d |
|- ( z = K -> ( ( I ` ( R ` z ) ) = ( I ` ( R ` 0 ) ) <-> ( I ` ( R ` K ) ) = ( I ` ( R ` 0 ) ) ) ) |
15 |
14
|
imbi2d |
|- ( z = K -> ( ( A e. S -> ( I ` ( R ` z ) ) = ( I ` ( R ` 0 ) ) ) <-> ( A e. S -> ( I ` ( R ` K ) ) = ( I ` ( R ` 0 ) ) ) ) ) |
16 |
|
eqidd |
|- ( A e. S -> ( I ` ( R ` 0 ) ) = ( I ` ( R ` 0 ) ) ) |
17 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
18 |
|
0zd |
|- ( A e. S -> 0 e. ZZ ) |
19 |
|
id |
|- ( A e. S -> A e. S ) |
20 |
2
|
a1i |
|- ( A e. S -> F : S --> S ) |
21 |
17 1 18 19 20
|
algrp1 |
|- ( ( A e. S /\ k e. NN0 ) -> ( R ` ( k + 1 ) ) = ( F ` ( R ` k ) ) ) |
22 |
21
|
fveq2d |
|- ( ( A e. S /\ k e. NN0 ) -> ( I ` ( R ` ( k + 1 ) ) ) = ( I ` ( F ` ( R ` k ) ) ) ) |
23 |
17 1 18 19 20
|
algrf |
|- ( A e. S -> R : NN0 --> S ) |
24 |
23
|
ffvelrnda |
|- ( ( A e. S /\ k e. NN0 ) -> ( R ` k ) e. S ) |
25 |
|
2fveq3 |
|- ( x = ( R ` k ) -> ( I ` ( F ` x ) ) = ( I ` ( F ` ( R ` k ) ) ) ) |
26 |
|
fveq2 |
|- ( x = ( R ` k ) -> ( I ` x ) = ( I ` ( R ` k ) ) ) |
27 |
25 26
|
eqeq12d |
|- ( x = ( R ` k ) -> ( ( I ` ( F ` x ) ) = ( I ` x ) <-> ( I ` ( F ` ( R ` k ) ) ) = ( I ` ( R ` k ) ) ) ) |
28 |
27 3
|
vtoclga |
|- ( ( R ` k ) e. S -> ( I ` ( F ` ( R ` k ) ) ) = ( I ` ( R ` k ) ) ) |
29 |
24 28
|
syl |
|- ( ( A e. S /\ k e. NN0 ) -> ( I ` ( F ` ( R ` k ) ) ) = ( I ` ( R ` k ) ) ) |
30 |
22 29
|
eqtrd |
|- ( ( A e. S /\ k e. NN0 ) -> ( I ` ( R ` ( k + 1 ) ) ) = ( I ` ( R ` k ) ) ) |
31 |
30
|
eqeq1d |
|- ( ( A e. S /\ k e. NN0 ) -> ( ( I ` ( R ` ( k + 1 ) ) ) = ( I ` ( R ` 0 ) ) <-> ( I ` ( R ` k ) ) = ( I ` ( R ` 0 ) ) ) ) |
32 |
31
|
biimprd |
|- ( ( A e. S /\ k e. NN0 ) -> ( ( I ` ( R ` k ) ) = ( I ` ( R ` 0 ) ) -> ( I ` ( R ` ( k + 1 ) ) ) = ( I ` ( R ` 0 ) ) ) ) |
33 |
32
|
expcom |
|- ( k e. NN0 -> ( A e. S -> ( ( I ` ( R ` k ) ) = ( I ` ( R ` 0 ) ) -> ( I ` ( R ` ( k + 1 ) ) ) = ( I ` ( R ` 0 ) ) ) ) ) |
34 |
33
|
a2d |
|- ( k e. NN0 -> ( ( A e. S -> ( I ` ( R ` k ) ) = ( I ` ( R ` 0 ) ) ) -> ( A e. S -> ( I ` ( R ` ( k + 1 ) ) ) = ( I ` ( R ` 0 ) ) ) ) ) |
35 |
6 9 12 15 16 34
|
nn0ind |
|- ( K e. NN0 -> ( A e. S -> ( I ` ( R ` K ) ) = ( I ` ( R ` 0 ) ) ) ) |
36 |
35
|
impcom |
|- ( ( A e. S /\ K e. NN0 ) -> ( I ` ( R ` K ) ) = ( I ` ( R ` 0 ) ) ) |