Step |
Hyp |
Ref |
Expression |
1 |
|
algrf.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
algrf.2 |
|- R = seq M ( ( F o. 1st ) , ( Z X. { A } ) ) |
3 |
|
algrf.3 |
|- ( ph -> M e. ZZ ) |
4 |
|
algrf.4 |
|- ( ph -> A e. S ) |
5 |
2
|
fveq1i |
|- ( R ` M ) = ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) |
6 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( ( Z X. { A } ) ` M ) ) |
7 |
3 6
|
syl |
|- ( ph -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = ( ( Z X. { A } ) ` M ) ) |
8 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
9 |
3 8
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
10 |
9 1
|
eleqtrrdi |
|- ( ph -> M e. Z ) |
11 |
|
fvconst2g |
|- ( ( A e. S /\ M e. Z ) -> ( ( Z X. { A } ) ` M ) = A ) |
12 |
4 10 11
|
syl2anc |
|- ( ph -> ( ( Z X. { A } ) ` M ) = A ) |
13 |
7 12
|
eqtrd |
|- ( ph -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` M ) = A ) |
14 |
5 13
|
eqtrid |
|- ( ph -> ( R ` M ) = A ) |