Description: An algorithm is a step function F : S --> S on a state space S . An algorithm acts on an initial state A e. S by iteratively applying F to give A , ( FA ) , ( F( FA ) ) and so on. An algorithm is said to halt if a fixed point of F is reached after a finite number of iterations.
The algorithm iterator R : NN0 --> S "runs" the algorithm F so that ( Rk ) is the state after k iterations of F on the initial state A .
Domain and codomain of the algorithm iterator R . (Contributed by Paul Chapman, 31-Mar-2011) (Revised by Mario Carneiro, 28-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | algrf.1 | |- Z = ( ZZ>= ` M ) |
|
algrf.2 | |- R = seq M ( ( F o. 1st ) , ( Z X. { A } ) ) |
||
algrf.3 | |- ( ph -> M e. ZZ ) |
||
algrf.4 | |- ( ph -> A e. S ) |
||
algrf.5 | |- ( ph -> F : S --> S ) |
||
Assertion | algrf | |- ( ph -> R : Z --> S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | algrf.1 | |- Z = ( ZZ>= ` M ) |
|
2 | algrf.2 | |- R = seq M ( ( F o. 1st ) , ( Z X. { A } ) ) |
|
3 | algrf.3 | |- ( ph -> M e. ZZ ) |
|
4 | algrf.4 | |- ( ph -> A e. S ) |
|
5 | algrf.5 | |- ( ph -> F : S --> S ) |
|
6 | fvconst2g | |- ( ( A e. S /\ x e. Z ) -> ( ( Z X. { A } ) ` x ) = A ) |
|
7 | 4 6 | sylan | |- ( ( ph /\ x e. Z ) -> ( ( Z X. { A } ) ` x ) = A ) |
8 | 4 | adantr | |- ( ( ph /\ x e. Z ) -> A e. S ) |
9 | 7 8 | eqeltrd | |- ( ( ph /\ x e. Z ) -> ( ( Z X. { A } ) ` x ) e. S ) |
10 | vex | |- x e. _V |
|
11 | vex | |- y e. _V |
|
12 | 10 11 | opco1i | |- ( x ( F o. 1st ) y ) = ( F ` x ) |
13 | simpl | |- ( ( x e. S /\ y e. S ) -> x e. S ) |
|
14 | ffvelrn | |- ( ( F : S --> S /\ x e. S ) -> ( F ` x ) e. S ) |
|
15 | 5 13 14 | syl2an | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( F ` x ) e. S ) |
16 | 12 15 | eqeltrid | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x ( F o. 1st ) y ) e. S ) |
17 | 1 3 9 16 | seqf | |- ( ph -> seq M ( ( F o. 1st ) , ( Z X. { A } ) ) : Z --> S ) |
18 | 2 | feq1i | |- ( R : Z --> S <-> seq M ( ( F o. 1st ) , ( Z X. { A } ) ) : Z --> S ) |
19 | 17 18 | sylibr | |- ( ph -> R : Z --> S ) |