Step |
Hyp |
Ref |
Expression |
1 |
|
algrf.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
algrf.2 |
|- R = seq M ( ( F o. 1st ) , ( Z X. { A } ) ) |
3 |
|
algrf.3 |
|- ( ph -> M e. ZZ ) |
4 |
|
algrf.4 |
|- ( ph -> A e. S ) |
5 |
|
algrf.5 |
|- ( ph -> F : S --> S ) |
6 |
|
simpr |
|- ( ( ph /\ K e. Z ) -> K e. Z ) |
7 |
6 1
|
eleqtrdi |
|- ( ( ph /\ K e. Z ) -> K e. ( ZZ>= ` M ) ) |
8 |
|
seqp1 |
|- ( K e. ( ZZ>= ` M ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( K + 1 ) ) = ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` K ) ( F o. 1st ) ( ( Z X. { A } ) ` ( K + 1 ) ) ) ) |
9 |
7 8
|
syl |
|- ( ( ph /\ K e. Z ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( K + 1 ) ) = ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` K ) ( F o. 1st ) ( ( Z X. { A } ) ` ( K + 1 ) ) ) ) |
10 |
2
|
fveq1i |
|- ( R ` ( K + 1 ) ) = ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( K + 1 ) ) |
11 |
2
|
fveq1i |
|- ( R ` K ) = ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` K ) |
12 |
11
|
fveq2i |
|- ( F ` ( R ` K ) ) = ( F ` ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` K ) ) |
13 |
|
fvex |
|- ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` K ) e. _V |
14 |
|
fvex |
|- ( ( Z X. { A } ) ` ( K + 1 ) ) e. _V |
15 |
13 14
|
opco1i |
|- ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` K ) ( F o. 1st ) ( ( Z X. { A } ) ` ( K + 1 ) ) ) = ( F ` ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` K ) ) |
16 |
12 15
|
eqtr4i |
|- ( F ` ( R ` K ) ) = ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` K ) ( F o. 1st ) ( ( Z X. { A } ) ` ( K + 1 ) ) ) |
17 |
9 10 16
|
3eqtr4g |
|- ( ( ph /\ K e. Z ) -> ( R ` ( K + 1 ) ) = ( F ` ( R ` K ) ) ) |