Metamath Proof Explorer


Theorem alimex

Description: An equivalence between an implication with a universally quantified consequent and an implication with an existentially quantified antecedent. An interesting case is when the same formula is substituted for both ph and ps , since then both implications express a type of nonfreeness. See also eximal . (Contributed by BJ, 12-May-2019)

Ref Expression
Assertion alimex
|- ( ( ph -> A. x ps ) <-> ( E. x -. ps -> -. ph ) )

Proof

Step Hyp Ref Expression
1 alex
 |-  ( A. x ps <-> -. E. x -. ps )
2 1 imbi2i
 |-  ( ( ph -> A. x ps ) <-> ( ph -> -. E. x -. ps ) )
3 con2b
 |-  ( ( ph -> -. E. x -. ps ) <-> ( E. x -. ps -> -. ph ) )
4 2 3 bitri
 |-  ( ( ph -> A. x ps ) <-> ( E. x -. ps -> -. ph ) )