Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alinexa | |- ( A. x ( ph -> -. ps ) <-> -. E. x ( ph /\ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imnang | |- ( A. x ( ph -> -. ps ) <-> A. x -. ( ph /\ ps ) ) |
|
| 2 | alnex | |- ( A. x -. ( ph /\ ps ) <-> -. E. x ( ph /\ ps ) ) |
|
| 3 | 1 2 | bitri | |- ( A. x ( ph -> -. ps ) <-> -. E. x ( ph /\ ps ) ) |