Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | alinexa | |- ( A. x ( ph -> -. ps ) <-> -. E. x ( ph /\ ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnang | |- ( A. x ( ph -> -. ps ) <-> A. x -. ( ph /\ ps ) ) |
|
2 | alnex | |- ( A. x -. ( ph /\ ps ) <-> -. E. x ( ph /\ ps ) ) |
|
3 | 1 2 | bitri | |- ( A. x ( ph -> -. ps ) <-> -. E. x ( ph /\ ps ) ) |