Metamath Proof Explorer


Theorem allbutfifvre

Description: Given a sequence of real-valued functions, and X that belongs to all but finitely many domains, then its function value is ultimately a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses allbutfifvre.1
|- F/ m ph
allbutfifvre.2
|- Z = ( ZZ>= ` M )
allbutfifvre.3
|- ( ( ph /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR )
allbutfifvre.4
|- D = U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m )
allbutfifvre.5
|- ( ph -> X e. D )
Assertion allbutfifvre
|- ( ph -> E. n e. Z A. m e. ( ZZ>= ` n ) ( ( F ` m ) ` X ) e. RR )

Proof

Step Hyp Ref Expression
1 allbutfifvre.1
 |-  F/ m ph
2 allbutfifvre.2
 |-  Z = ( ZZ>= ` M )
3 allbutfifvre.3
 |-  ( ( ph /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR )
4 allbutfifvre.4
 |-  D = U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m )
5 allbutfifvre.5
 |-  ( ph -> X e. D )
6 5 4 eleqtrdi
 |-  ( ph -> X e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) )
7 eqid
 |-  U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m )
8 2 7 allbutfi
 |-  ( X e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) <-> E. n e. Z A. m e. ( ZZ>= ` n ) X e. dom ( F ` m ) )
9 6 8 sylib
 |-  ( ph -> E. n e. Z A. m e. ( ZZ>= ` n ) X e. dom ( F ` m ) )
10 nfv
 |-  F/ m n e. Z
11 1 10 nfan
 |-  F/ m ( ph /\ n e. Z )
12 simpll
 |-  ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> ph )
13 2 uztrn2
 |-  ( ( n e. Z /\ j e. ( ZZ>= ` n ) ) -> j e. Z )
14 13 ssd
 |-  ( n e. Z -> ( ZZ>= ` n ) C_ Z )
15 14 sselda
 |-  ( ( n e. Z /\ m e. ( ZZ>= ` n ) ) -> m e. Z )
16 15 adantll
 |-  ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> m e. Z )
17 3 ffvelrnda
 |-  ( ( ( ph /\ m e. Z ) /\ X e. dom ( F ` m ) ) -> ( ( F ` m ) ` X ) e. RR )
18 17 ex
 |-  ( ( ph /\ m e. Z ) -> ( X e. dom ( F ` m ) -> ( ( F ` m ) ` X ) e. RR ) )
19 12 16 18 syl2anc
 |-  ( ( ( ph /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> ( X e. dom ( F ` m ) -> ( ( F ` m ) ` X ) e. RR ) )
20 11 19 ralimdaa
 |-  ( ( ph /\ n e. Z ) -> ( A. m e. ( ZZ>= ` n ) X e. dom ( F ` m ) -> A. m e. ( ZZ>= ` n ) ( ( F ` m ) ` X ) e. RR ) )
21 20 reximdva
 |-  ( ph -> ( E. n e. Z A. m e. ( ZZ>= ` n ) X e. dom ( F ` m ) -> E. n e. Z A. m e. ( ZZ>= ` n ) ( ( F ` m ) ` X ) e. RR ) )
22 9 21 mpd
 |-  ( ph -> E. n e. Z A. m e. ( ZZ>= ` n ) ( ( F ` m ) ` X ) e. RR )