Metamath Proof Explorer


Theorem alrimd

Description: Deduction form of Theorem 19.21 of Margaris p. 90, see 19.21 . (Contributed by Mario Carneiro, 24-Sep-2016)

Ref Expression
Hypotheses alrimd.1
|- F/ x ph
alrimd.2
|- F/ x ps
alrimd.3
|- ( ph -> ( ps -> ch ) )
Assertion alrimd
|- ( ph -> ( ps -> A. x ch ) )

Proof

Step Hyp Ref Expression
1 alrimd.1
 |-  F/ x ph
2 alrimd.2
 |-  F/ x ps
3 alrimd.3
 |-  ( ph -> ( ps -> ch ) )
4 2 a1i
 |-  ( ph -> F/ x ps )
5 1 4 3 alrimdd
 |-  ( ph -> ( ps -> A. x ch ) )