Metamath Proof Explorer


Theorem alrimdd

Description: Deduction form of Theorem 19.21 of Margaris p. 90, see 19.21 . (Contributed by Mario Carneiro, 24-Sep-2016)

Ref Expression
Hypotheses alrimdd.1
|- F/ x ph
alrimdd.2
|- ( ph -> F/ x ps )
alrimdd.3
|- ( ph -> ( ps -> ch ) )
Assertion alrimdd
|- ( ph -> ( ps -> A. x ch ) )

Proof

Step Hyp Ref Expression
1 alrimdd.1
 |-  F/ x ph
2 alrimdd.2
 |-  ( ph -> F/ x ps )
3 alrimdd.3
 |-  ( ph -> ( ps -> ch ) )
4 2 nf5rd
 |-  ( ph -> ( ps -> A. x ps ) )
5 1 3 alimd
 |-  ( ph -> ( A. x ps -> A. x ch ) )
6 4 5 syld
 |-  ( ph -> ( ps -> A. x ch ) )