Metamath Proof Explorer


Theorem alrimdh

Description: Deduction form of Theorem 19.21 of Margaris p. 90, see 19.21 and 19.21h . (Contributed by NM, 10-Feb-1997) (Proof shortened by Andrew Salmon, 13-May-2011)

Ref Expression
Hypotheses alrimdh.1
|- ( ph -> A. x ph )
alrimdh.2
|- ( ps -> A. x ps )
alrimdh.3
|- ( ph -> ( ps -> ch ) )
Assertion alrimdh
|- ( ph -> ( ps -> A. x ch ) )

Proof

Step Hyp Ref Expression
1 alrimdh.1
 |-  ( ph -> A. x ph )
2 alrimdh.2
 |-  ( ps -> A. x ps )
3 alrimdh.3
 |-  ( ph -> ( ps -> ch ) )
4 1 3 alimdh
 |-  ( ph -> ( A. x ps -> A. x ch ) )
5 2 4 syl5
 |-  ( ph -> ( ps -> A. x ch ) )