Metamath Proof Explorer


Theorem alrimih

Description: Inference form of Theorem 19.21 of Margaris p. 90. See 19.21 and 19.21h . Instance of sylg . (Contributed by NM, 9-Jan-1993) (Revised by BJ, 31-Mar-2021)

Ref Expression
Hypotheses alrimih.1
|- ( ph -> A. x ph )
alrimih.2
|- ( ph -> ps )
Assertion alrimih
|- ( ph -> A. x ps )

Proof

Step Hyp Ref Expression
1 alrimih.1
 |-  ( ph -> A. x ph )
2 alrimih.2
 |-  ( ph -> ps )
3 1 2 sylg
 |-  ( ph -> A. x ps )