Description: Show that A is less than B by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alrple | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> A. x e. RR+ A <_ ( B + x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 2 | xralrple | |- ( ( A e. RR* /\ B e. RR ) -> ( A <_ B <-> A. x e. RR+ A <_ ( B + x ) ) ) |
|
| 3 | 1 2 | sylan | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> A. x e. RR+ A <_ ( B + x ) ) ) |