Metamath Proof Explorer


Theorem alrple

Description: Show that A is less than B by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014)

Ref Expression
Assertion alrple
|- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> A. x e. RR+ A <_ ( B + x ) ) )

Proof

Step Hyp Ref Expression
1 rexr
 |-  ( A e. RR -> A e. RR* )
2 xralrple
 |-  ( ( A e. RR* /\ B e. RR ) -> ( A <_ B <-> A. x e. RR+ A <_ ( B + x ) ) )
3 1 2 sylan
 |-  ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> A. x e. RR+ A <_ ( B + x ) ) )