Description: Show that A is less than B by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | alrple | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> A. x e. RR+ A <_ ( B + x ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr | |- ( A e. RR -> A e. RR* ) |
|
2 | xralrple | |- ( ( A e. RR* /\ B e. RR ) -> ( A <_ B <-> A. x e. RR+ A <_ ( B + x ) ) ) |
|
3 | 1 2 | sylan | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> A. x e. RR+ A <_ ( B + x ) ) ) |