Metamath Proof Explorer


Theorem alsyl

Description: Universally quantified and uncurried (imported) form of syllogism. Theorem *10.3 in WhiteheadRussell p. 150. (Contributed by Andrew Salmon, 8-Jun-2011)

Ref Expression
Assertion alsyl
|- ( ( A. x ( ph -> ps ) /\ A. x ( ps -> ch ) ) -> A. x ( ph -> ch ) )

Proof

Step Hyp Ref Expression
1 pm3.33
 |-  ( ( ( ph -> ps ) /\ ( ps -> ch ) ) -> ( ph -> ch ) )
2 1 alanimi
 |-  ( ( A. x ( ph -> ps ) /\ A. x ( ps -> ch ) ) -> A. x ( ph -> ch ) )