Step |
Hyp |
Ref |
Expression |
1 |
|
amgm.1 |
|- M = ( mulGrp ` CCfld ) |
2 |
|
amgm.2 |
|- ( ph -> A e. Fin ) |
3 |
|
amgm.3 |
|- ( ph -> A =/= (/) ) |
4 |
|
amgm.4 |
|- ( ph -> F : A --> RR+ ) |
5 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
6 |
|
cnring |
|- CCfld e. Ring |
7 |
|
ringabl |
|- ( CCfld e. Ring -> CCfld e. Abel ) |
8 |
6 7
|
mp1i |
|- ( ph -> CCfld e. Abel ) |
9 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
10 |
9
|
simpli |
|- RR e. ( SubRing ` CCfld ) |
11 |
|
subrgsubg |
|- ( RR e. ( SubRing ` CCfld ) -> RR e. ( SubGrp ` CCfld ) ) |
12 |
10 11
|
mp1i |
|- ( ph -> RR e. ( SubGrp ` CCfld ) ) |
13 |
4
|
ffvelrnda |
|- ( ( ph /\ k e. A ) -> ( F ` k ) e. RR+ ) |
14 |
13
|
relogcld |
|- ( ( ph /\ k e. A ) -> ( log ` ( F ` k ) ) e. RR ) |
15 |
14
|
renegcld |
|- ( ( ph /\ k e. A ) -> -u ( log ` ( F ` k ) ) e. RR ) |
16 |
15
|
fmpttd |
|- ( ph -> ( k e. A |-> -u ( log ` ( F ` k ) ) ) : A --> RR ) |
17 |
|
c0ex |
|- 0 e. _V |
18 |
17
|
a1i |
|- ( ph -> 0 e. _V ) |
19 |
16 2 18
|
fdmfifsupp |
|- ( ph -> ( k e. A |-> -u ( log ` ( F ` k ) ) ) finSupp 0 ) |
20 |
5 8 2 12 16 19
|
gsumsubgcl |
|- ( ph -> ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) e. RR ) |
21 |
20
|
recnd |
|- ( ph -> ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) e. CC ) |
22 |
|
hashnncl |
|- ( A e. Fin -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) |
23 |
2 22
|
syl |
|- ( ph -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) |
24 |
3 23
|
mpbird |
|- ( ph -> ( # ` A ) e. NN ) |
25 |
24
|
nncnd |
|- ( ph -> ( # ` A ) e. CC ) |
26 |
24
|
nnne0d |
|- ( ph -> ( # ` A ) =/= 0 ) |
27 |
21 25 26
|
divnegd |
|- ( ph -> -u ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) = ( -u ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) ) |
28 |
14
|
recnd |
|- ( ( ph /\ k e. A ) -> ( log ` ( F ` k ) ) e. CC ) |
29 |
2 28
|
gsumfsum |
|- ( ph -> ( CCfld gsum ( k e. A |-> ( log ` ( F ` k ) ) ) ) = sum_ k e. A ( log ` ( F ` k ) ) ) |
30 |
28
|
negnegd |
|- ( ( ph /\ k e. A ) -> -u -u ( log ` ( F ` k ) ) = ( log ` ( F ` k ) ) ) |
31 |
30
|
sumeq2dv |
|- ( ph -> sum_ k e. A -u -u ( log ` ( F ` k ) ) = sum_ k e. A ( log ` ( F ` k ) ) ) |
32 |
15
|
recnd |
|- ( ( ph /\ k e. A ) -> -u ( log ` ( F ` k ) ) e. CC ) |
33 |
2 32
|
fsumneg |
|- ( ph -> sum_ k e. A -u -u ( log ` ( F ` k ) ) = -u sum_ k e. A -u ( log ` ( F ` k ) ) ) |
34 |
29 31 33
|
3eqtr2rd |
|- ( ph -> -u sum_ k e. A -u ( log ` ( F ` k ) ) = ( CCfld gsum ( k e. A |-> ( log ` ( F ` k ) ) ) ) ) |
35 |
2 32
|
gsumfsum |
|- ( ph -> ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) = sum_ k e. A -u ( log ` ( F ` k ) ) ) |
36 |
35
|
negeqd |
|- ( ph -> -u ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) = -u sum_ k e. A -u ( log ` ( F ` k ) ) ) |
37 |
4
|
feqmptd |
|- ( ph -> F = ( k e. A |-> ( F ` k ) ) ) |
38 |
|
relogf1o |
|- ( log |` RR+ ) : RR+ -1-1-onto-> RR |
39 |
|
f1of |
|- ( ( log |` RR+ ) : RR+ -1-1-onto-> RR -> ( log |` RR+ ) : RR+ --> RR ) |
40 |
38 39
|
mp1i |
|- ( ph -> ( log |` RR+ ) : RR+ --> RR ) |
41 |
40
|
feqmptd |
|- ( ph -> ( log |` RR+ ) = ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) ) |
42 |
|
fvres |
|- ( x e. RR+ -> ( ( log |` RR+ ) ` x ) = ( log ` x ) ) |
43 |
42
|
mpteq2ia |
|- ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) = ( x e. RR+ |-> ( log ` x ) ) |
44 |
41 43
|
eqtrdi |
|- ( ph -> ( log |` RR+ ) = ( x e. RR+ |-> ( log ` x ) ) ) |
45 |
|
fveq2 |
|- ( x = ( F ` k ) -> ( log ` x ) = ( log ` ( F ` k ) ) ) |
46 |
13 37 44 45
|
fmptco |
|- ( ph -> ( ( log |` RR+ ) o. F ) = ( k e. A |-> ( log ` ( F ` k ) ) ) ) |
47 |
46
|
oveq2d |
|- ( ph -> ( CCfld gsum ( ( log |` RR+ ) o. F ) ) = ( CCfld gsum ( k e. A |-> ( log ` ( F ` k ) ) ) ) ) |
48 |
34 36 47
|
3eqtr4d |
|- ( ph -> -u ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) = ( CCfld gsum ( ( log |` RR+ ) o. F ) ) ) |
49 |
1
|
oveq1i |
|- ( M |`s ( CC \ { 0 } ) ) = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
50 |
49
|
rpmsubg |
|- RR+ e. ( SubGrp ` ( M |`s ( CC \ { 0 } ) ) ) |
51 |
|
subgsubm |
|- ( RR+ e. ( SubGrp ` ( M |`s ( CC \ { 0 } ) ) ) -> RR+ e. ( SubMnd ` ( M |`s ( CC \ { 0 } ) ) ) ) |
52 |
50 51
|
ax-mp |
|- RR+ e. ( SubMnd ` ( M |`s ( CC \ { 0 } ) ) ) |
53 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
54 |
|
cndrng |
|- CCfld e. DivRing |
55 |
53 5 54
|
drngui |
|- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
56 |
55 1
|
unitsubm |
|- ( CCfld e. Ring -> ( CC \ { 0 } ) e. ( SubMnd ` M ) ) |
57 |
|
eqid |
|- ( M |`s ( CC \ { 0 } ) ) = ( M |`s ( CC \ { 0 } ) ) |
58 |
57
|
subsubm |
|- ( ( CC \ { 0 } ) e. ( SubMnd ` M ) -> ( RR+ e. ( SubMnd ` ( M |`s ( CC \ { 0 } ) ) ) <-> ( RR+ e. ( SubMnd ` M ) /\ RR+ C_ ( CC \ { 0 } ) ) ) ) |
59 |
6 56 58
|
mp2b |
|- ( RR+ e. ( SubMnd ` ( M |`s ( CC \ { 0 } ) ) ) <-> ( RR+ e. ( SubMnd ` M ) /\ RR+ C_ ( CC \ { 0 } ) ) ) |
60 |
52 59
|
mpbi |
|- ( RR+ e. ( SubMnd ` M ) /\ RR+ C_ ( CC \ { 0 } ) ) |
61 |
60
|
simpli |
|- RR+ e. ( SubMnd ` M ) |
62 |
|
eqid |
|- ( M |`s RR+ ) = ( M |`s RR+ ) |
63 |
62
|
submbas |
|- ( RR+ e. ( SubMnd ` M ) -> RR+ = ( Base ` ( M |`s RR+ ) ) ) |
64 |
61 63
|
ax-mp |
|- RR+ = ( Base ` ( M |`s RR+ ) ) |
65 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
66 |
1 65
|
ringidval |
|- 1 = ( 0g ` M ) |
67 |
62 66
|
subm0 |
|- ( RR+ e. ( SubMnd ` M ) -> 1 = ( 0g ` ( M |`s RR+ ) ) ) |
68 |
61 67
|
ax-mp |
|- 1 = ( 0g ` ( M |`s RR+ ) ) |
69 |
|
cncrng |
|- CCfld e. CRing |
70 |
1
|
crngmgp |
|- ( CCfld e. CRing -> M e. CMnd ) |
71 |
69 70
|
mp1i |
|- ( ph -> M e. CMnd ) |
72 |
62
|
submmnd |
|- ( RR+ e. ( SubMnd ` M ) -> ( M |`s RR+ ) e. Mnd ) |
73 |
61 72
|
mp1i |
|- ( ph -> ( M |`s RR+ ) e. Mnd ) |
74 |
62
|
subcmn |
|- ( ( M e. CMnd /\ ( M |`s RR+ ) e. Mnd ) -> ( M |`s RR+ ) e. CMnd ) |
75 |
71 73 74
|
syl2anc |
|- ( ph -> ( M |`s RR+ ) e. CMnd ) |
76 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
77 |
76
|
subrgring |
|- ( RR e. ( SubRing ` CCfld ) -> RRfld e. Ring ) |
78 |
10 77
|
ax-mp |
|- RRfld e. Ring |
79 |
|
ringmnd |
|- ( RRfld e. Ring -> RRfld e. Mnd ) |
80 |
78 79
|
mp1i |
|- ( ph -> RRfld e. Mnd ) |
81 |
1
|
oveq1i |
|- ( M |`s RR+ ) = ( ( mulGrp ` CCfld ) |`s RR+ ) |
82 |
81
|
reloggim |
|- ( log |` RR+ ) e. ( ( M |`s RR+ ) GrpIso RRfld ) |
83 |
|
gimghm |
|- ( ( log |` RR+ ) e. ( ( M |`s RR+ ) GrpIso RRfld ) -> ( log |` RR+ ) e. ( ( M |`s RR+ ) GrpHom RRfld ) ) |
84 |
82 83
|
ax-mp |
|- ( log |` RR+ ) e. ( ( M |`s RR+ ) GrpHom RRfld ) |
85 |
|
ghmmhm |
|- ( ( log |` RR+ ) e. ( ( M |`s RR+ ) GrpHom RRfld ) -> ( log |` RR+ ) e. ( ( M |`s RR+ ) MndHom RRfld ) ) |
86 |
84 85
|
mp1i |
|- ( ph -> ( log |` RR+ ) e. ( ( M |`s RR+ ) MndHom RRfld ) ) |
87 |
|
1ex |
|- 1 e. _V |
88 |
87
|
a1i |
|- ( ph -> 1 e. _V ) |
89 |
4 2 88
|
fdmfifsupp |
|- ( ph -> F finSupp 1 ) |
90 |
64 68 75 80 2 86 4 89
|
gsummhm |
|- ( ph -> ( RRfld gsum ( ( log |` RR+ ) o. F ) ) = ( ( log |` RR+ ) ` ( ( M |`s RR+ ) gsum F ) ) ) |
91 |
|
subgsubm |
|- ( RR e. ( SubGrp ` CCfld ) -> RR e. ( SubMnd ` CCfld ) ) |
92 |
12 91
|
syl |
|- ( ph -> RR e. ( SubMnd ` CCfld ) ) |
93 |
|
fco |
|- ( ( ( log |` RR+ ) : RR+ --> RR /\ F : A --> RR+ ) -> ( ( log |` RR+ ) o. F ) : A --> RR ) |
94 |
40 4 93
|
syl2anc |
|- ( ph -> ( ( log |` RR+ ) o. F ) : A --> RR ) |
95 |
2 92 94 76
|
gsumsubm |
|- ( ph -> ( CCfld gsum ( ( log |` RR+ ) o. F ) ) = ( RRfld gsum ( ( log |` RR+ ) o. F ) ) ) |
96 |
61
|
a1i |
|- ( ph -> RR+ e. ( SubMnd ` M ) ) |
97 |
2 96 4 62
|
gsumsubm |
|- ( ph -> ( M gsum F ) = ( ( M |`s RR+ ) gsum F ) ) |
98 |
97
|
fveq2d |
|- ( ph -> ( ( log |` RR+ ) ` ( M gsum F ) ) = ( ( log |` RR+ ) ` ( ( M |`s RR+ ) gsum F ) ) ) |
99 |
90 95 98
|
3eqtr4d |
|- ( ph -> ( CCfld gsum ( ( log |` RR+ ) o. F ) ) = ( ( log |` RR+ ) ` ( M gsum F ) ) ) |
100 |
66 71 2 96 4 89
|
gsumsubmcl |
|- ( ph -> ( M gsum F ) e. RR+ ) |
101 |
100
|
fvresd |
|- ( ph -> ( ( log |` RR+ ) ` ( M gsum F ) ) = ( log ` ( M gsum F ) ) ) |
102 |
48 99 101
|
3eqtrd |
|- ( ph -> -u ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) = ( log ` ( M gsum F ) ) ) |
103 |
102
|
oveq1d |
|- ( ph -> ( -u ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) = ( ( log ` ( M gsum F ) ) / ( # ` A ) ) ) |
104 |
100
|
relogcld |
|- ( ph -> ( log ` ( M gsum F ) ) e. RR ) |
105 |
104
|
recnd |
|- ( ph -> ( log ` ( M gsum F ) ) e. CC ) |
106 |
105 25 26
|
divrec2d |
|- ( ph -> ( ( log ` ( M gsum F ) ) / ( # ` A ) ) = ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) ) |
107 |
27 103 106
|
3eqtrd |
|- ( ph -> -u ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) = ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) ) |
108 |
37
|
oveq2d |
|- ( ph -> ( CCfld gsum F ) = ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) ) |
109 |
13
|
rpcnd |
|- ( ( ph /\ k e. A ) -> ( F ` k ) e. CC ) |
110 |
2 109
|
gsumfsum |
|- ( ph -> ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) = sum_ k e. A ( F ` k ) ) |
111 |
108 110
|
eqtrd |
|- ( ph -> ( CCfld gsum F ) = sum_ k e. A ( F ` k ) ) |
112 |
2 3 13
|
fsumrpcl |
|- ( ph -> sum_ k e. A ( F ` k ) e. RR+ ) |
113 |
111 112
|
eqeltrd |
|- ( ph -> ( CCfld gsum F ) e. RR+ ) |
114 |
24
|
nnrpd |
|- ( ph -> ( # ` A ) e. RR+ ) |
115 |
113 114
|
rpdivcld |
|- ( ph -> ( ( CCfld gsum F ) / ( # ` A ) ) e. RR+ ) |
116 |
115
|
relogcld |
|- ( ph -> ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) e. RR ) |
117 |
20 24
|
nndivred |
|- ( ph -> ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) e. RR ) |
118 |
|
rpssre |
|- RR+ C_ RR |
119 |
118
|
a1i |
|- ( ph -> RR+ C_ RR ) |
120 |
|
relogcl |
|- ( w e. RR+ -> ( log ` w ) e. RR ) |
121 |
120
|
adantl |
|- ( ( ph /\ w e. RR+ ) -> ( log ` w ) e. RR ) |
122 |
121
|
renegcld |
|- ( ( ph /\ w e. RR+ ) -> -u ( log ` w ) e. RR ) |
123 |
122
|
fmpttd |
|- ( ph -> ( w e. RR+ |-> -u ( log ` w ) ) : RR+ --> RR ) |
124 |
|
ioorp |
|- ( 0 (,) +oo ) = RR+ |
125 |
124
|
eleq2i |
|- ( a e. ( 0 (,) +oo ) <-> a e. RR+ ) |
126 |
124
|
eleq2i |
|- ( b e. ( 0 (,) +oo ) <-> b e. RR+ ) |
127 |
|
iccssioo2 |
|- ( ( a e. ( 0 (,) +oo ) /\ b e. ( 0 (,) +oo ) ) -> ( a [,] b ) C_ ( 0 (,) +oo ) ) |
128 |
125 126 127
|
syl2anbr |
|- ( ( a e. RR+ /\ b e. RR+ ) -> ( a [,] b ) C_ ( 0 (,) +oo ) ) |
129 |
128 124
|
sseqtrdi |
|- ( ( a e. RR+ /\ b e. RR+ ) -> ( a [,] b ) C_ RR+ ) |
130 |
129
|
adantl |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> ( a [,] b ) C_ RR+ ) |
131 |
24
|
nnrecred |
|- ( ph -> ( 1 / ( # ` A ) ) e. RR ) |
132 |
114
|
rpreccld |
|- ( ph -> ( 1 / ( # ` A ) ) e. RR+ ) |
133 |
132
|
rpge0d |
|- ( ph -> 0 <_ ( 1 / ( # ` A ) ) ) |
134 |
|
elrege0 |
|- ( ( 1 / ( # ` A ) ) e. ( 0 [,) +oo ) <-> ( ( 1 / ( # ` A ) ) e. RR /\ 0 <_ ( 1 / ( # ` A ) ) ) ) |
135 |
131 133 134
|
sylanbrc |
|- ( ph -> ( 1 / ( # ` A ) ) e. ( 0 [,) +oo ) ) |
136 |
|
fconst6g |
|- ( ( 1 / ( # ` A ) ) e. ( 0 [,) +oo ) -> ( A X. { ( 1 / ( # ` A ) ) } ) : A --> ( 0 [,) +oo ) ) |
137 |
135 136
|
syl |
|- ( ph -> ( A X. { ( 1 / ( # ` A ) ) } ) : A --> ( 0 [,) +oo ) ) |
138 |
|
0lt1 |
|- 0 < 1 |
139 |
|
fconstmpt |
|- ( A X. { ( 1 / ( # ` A ) ) } ) = ( k e. A |-> ( 1 / ( # ` A ) ) ) |
140 |
139
|
oveq2i |
|- ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) = ( CCfld gsum ( k e. A |-> ( 1 / ( # ` A ) ) ) ) |
141 |
|
ringmnd |
|- ( CCfld e. Ring -> CCfld e. Mnd ) |
142 |
6 141
|
mp1i |
|- ( ph -> CCfld e. Mnd ) |
143 |
131
|
recnd |
|- ( ph -> ( 1 / ( # ` A ) ) e. CC ) |
144 |
|
eqid |
|- ( .g ` CCfld ) = ( .g ` CCfld ) |
145 |
53 144
|
gsumconst |
|- ( ( CCfld e. Mnd /\ A e. Fin /\ ( 1 / ( # ` A ) ) e. CC ) -> ( CCfld gsum ( k e. A |-> ( 1 / ( # ` A ) ) ) ) = ( ( # ` A ) ( .g ` CCfld ) ( 1 / ( # ` A ) ) ) ) |
146 |
142 2 143 145
|
syl3anc |
|- ( ph -> ( CCfld gsum ( k e. A |-> ( 1 / ( # ` A ) ) ) ) = ( ( # ` A ) ( .g ` CCfld ) ( 1 / ( # ` A ) ) ) ) |
147 |
24
|
nnzd |
|- ( ph -> ( # ` A ) e. ZZ ) |
148 |
|
cnfldmulg |
|- ( ( ( # ` A ) e. ZZ /\ ( 1 / ( # ` A ) ) e. CC ) -> ( ( # ` A ) ( .g ` CCfld ) ( 1 / ( # ` A ) ) ) = ( ( # ` A ) x. ( 1 / ( # ` A ) ) ) ) |
149 |
147 143 148
|
syl2anc |
|- ( ph -> ( ( # ` A ) ( .g ` CCfld ) ( 1 / ( # ` A ) ) ) = ( ( # ` A ) x. ( 1 / ( # ` A ) ) ) ) |
150 |
25 26
|
recidd |
|- ( ph -> ( ( # ` A ) x. ( 1 / ( # ` A ) ) ) = 1 ) |
151 |
146 149 150
|
3eqtrd |
|- ( ph -> ( CCfld gsum ( k e. A |-> ( 1 / ( # ` A ) ) ) ) = 1 ) |
152 |
140 151
|
eqtrid |
|- ( ph -> ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) = 1 ) |
153 |
138 152
|
breqtrrid |
|- ( ph -> 0 < ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) |
154 |
|
logccv |
|- ( ( ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( t x. ( log ` x ) ) + ( ( 1 - t ) x. ( log ` y ) ) ) < ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ) |
155 |
154
|
3adant1 |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( t x. ( log ` x ) ) + ( ( 1 - t ) x. ( log ` y ) ) ) < ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ) |
156 |
|
ioossre |
|- ( 0 (,) 1 ) C_ RR |
157 |
|
simp3 |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> t e. ( 0 (,) 1 ) ) |
158 |
156 157
|
sselid |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> t e. RR ) |
159 |
|
simp21 |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> x e. RR+ ) |
160 |
159
|
relogcld |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( log ` x ) e. RR ) |
161 |
158 160
|
remulcld |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( t x. ( log ` x ) ) e. RR ) |
162 |
|
1re |
|- 1 e. RR |
163 |
|
resubcl |
|- ( ( 1 e. RR /\ t e. RR ) -> ( 1 - t ) e. RR ) |
164 |
162 158 163
|
sylancr |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( 1 - t ) e. RR ) |
165 |
|
simp22 |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> y e. RR+ ) |
166 |
165
|
relogcld |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( log ` y ) e. RR ) |
167 |
164 166
|
remulcld |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( 1 - t ) x. ( log ` y ) ) e. RR ) |
168 |
161 167
|
readdcld |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( t x. ( log ` x ) ) + ( ( 1 - t ) x. ( log ` y ) ) ) e. RR ) |
169 |
|
simp1 |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ph ) |
170 |
|
ioossicc |
|- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
171 |
170 157
|
sselid |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> t e. ( 0 [,] 1 ) ) |
172 |
119 130
|
cvxcl |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ t e. ( 0 [,] 1 ) ) ) -> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) e. RR+ ) |
173 |
169 159 165 171 172
|
syl13anc |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) e. RR+ ) |
174 |
173
|
relogcld |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) e. RR ) |
175 |
168 174
|
ltnegd |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( ( t x. ( log ` x ) ) + ( ( 1 - t ) x. ( log ` y ) ) ) < ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) <-> -u ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) < -u ( ( t x. ( log ` x ) ) + ( ( 1 - t ) x. ( log ` y ) ) ) ) ) |
176 |
155 175
|
mpbid |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> -u ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) < -u ( ( t x. ( log ` x ) ) + ( ( 1 - t ) x. ( log ` y ) ) ) ) |
177 |
|
fveq2 |
|- ( w = ( ( t x. x ) + ( ( 1 - t ) x. y ) ) -> ( log ` w ) = ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ) |
178 |
177
|
negeqd |
|- ( w = ( ( t x. x ) + ( ( 1 - t ) x. y ) ) -> -u ( log ` w ) = -u ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ) |
179 |
|
eqid |
|- ( w e. RR+ |-> -u ( log ` w ) ) = ( w e. RR+ |-> -u ( log ` w ) ) |
180 |
|
negex |
|- -u ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) e. _V |
181 |
178 179 180
|
fvmpt |
|- ( ( ( t x. x ) + ( ( 1 - t ) x. y ) ) e. RR+ -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) = -u ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ) |
182 |
173 181
|
syl |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) = -u ( log ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ) |
183 |
|
fveq2 |
|- ( w = x -> ( log ` w ) = ( log ` x ) ) |
184 |
183
|
negeqd |
|- ( w = x -> -u ( log ` w ) = -u ( log ` x ) ) |
185 |
|
negex |
|- -u ( log ` x ) e. _V |
186 |
184 179 185
|
fvmpt |
|- ( x e. RR+ -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` x ) = -u ( log ` x ) ) |
187 |
159 186
|
syl |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` x ) = -u ( log ` x ) ) |
188 |
187
|
oveq2d |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( t x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` x ) ) = ( t x. -u ( log ` x ) ) ) |
189 |
158
|
recnd |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> t e. CC ) |
190 |
160
|
recnd |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( log ` x ) e. CC ) |
191 |
189 190
|
mulneg2d |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( t x. -u ( log ` x ) ) = -u ( t x. ( log ` x ) ) ) |
192 |
188 191
|
eqtrd |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( t x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` x ) ) = -u ( t x. ( log ` x ) ) ) |
193 |
|
fveq2 |
|- ( w = y -> ( log ` w ) = ( log ` y ) ) |
194 |
193
|
negeqd |
|- ( w = y -> -u ( log ` w ) = -u ( log ` y ) ) |
195 |
|
negex |
|- -u ( log ` y ) e. _V |
196 |
194 179 195
|
fvmpt |
|- ( y e. RR+ -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` y ) = -u ( log ` y ) ) |
197 |
165 196
|
syl |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` y ) = -u ( log ` y ) ) |
198 |
197
|
oveq2d |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( 1 - t ) x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` y ) ) = ( ( 1 - t ) x. -u ( log ` y ) ) ) |
199 |
164
|
recnd |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( 1 - t ) e. CC ) |
200 |
166
|
recnd |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( log ` y ) e. CC ) |
201 |
199 200
|
mulneg2d |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( 1 - t ) x. -u ( log ` y ) ) = -u ( ( 1 - t ) x. ( log ` y ) ) ) |
202 |
198 201
|
eqtrd |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( 1 - t ) x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` y ) ) = -u ( ( 1 - t ) x. ( log ` y ) ) ) |
203 |
192 202
|
oveq12d |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( t x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` x ) ) + ( ( 1 - t ) x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` y ) ) ) = ( -u ( t x. ( log ` x ) ) + -u ( ( 1 - t ) x. ( log ` y ) ) ) ) |
204 |
161
|
recnd |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( t x. ( log ` x ) ) e. CC ) |
205 |
167
|
recnd |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( 1 - t ) x. ( log ` y ) ) e. CC ) |
206 |
204 205
|
negdid |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> -u ( ( t x. ( log ` x ) ) + ( ( 1 - t ) x. ( log ` y ) ) ) = ( -u ( t x. ( log ` x ) ) + -u ( ( 1 - t ) x. ( log ` y ) ) ) ) |
207 |
203 206
|
eqtr4d |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( t x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` x ) ) + ( ( 1 - t ) x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` y ) ) ) = -u ( ( t x. ( log ` x ) ) + ( ( 1 - t ) x. ( log ` y ) ) ) ) |
208 |
176 182 207
|
3brtr4d |
|- ( ( ph /\ ( x e. RR+ /\ y e. RR+ /\ x < y ) /\ t e. ( 0 (,) 1 ) ) -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) < ( ( t x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` x ) ) + ( ( 1 - t ) x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` y ) ) ) ) |
209 |
119 123 130 208
|
scvxcvx |
|- ( ( ph /\ ( u e. RR+ /\ v e. RR+ /\ s e. ( 0 [,] 1 ) ) ) -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( s x. u ) + ( ( 1 - s ) x. v ) ) ) <_ ( ( s x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` u ) ) + ( ( 1 - s ) x. ( ( w e. RR+ |-> -u ( log ` w ) ) ` v ) ) ) ) |
210 |
119 123 130 2 137 4 153 209
|
jensen |
|- ( ph -> ( ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) e. RR+ /\ ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) ) <_ ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. ( ( w e. RR+ |-> -u ( log ` w ) ) o. F ) ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) ) ) |
211 |
210
|
simprd |
|- ( ph -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) ) <_ ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. ( ( w e. RR+ |-> -u ( log ` w ) ) o. F ) ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) ) |
212 |
131
|
adantr |
|- ( ( ph /\ k e. A ) -> ( 1 / ( # ` A ) ) e. RR ) |
213 |
139
|
a1i |
|- ( ph -> ( A X. { ( 1 / ( # ` A ) ) } ) = ( k e. A |-> ( 1 / ( # ` A ) ) ) ) |
214 |
2 212 13 213 37
|
offval2 |
|- ( ph -> ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) = ( k e. A |-> ( ( 1 / ( # ` A ) ) x. ( F ` k ) ) ) ) |
215 |
214
|
oveq2d |
|- ( ph -> ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) ) = ( CCfld gsum ( k e. A |-> ( ( 1 / ( # ` A ) ) x. ( F ` k ) ) ) ) ) |
216 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
217 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
218 |
6
|
a1i |
|- ( ph -> CCfld e. Ring ) |
219 |
109
|
fmpttd |
|- ( ph -> ( k e. A |-> ( F ` k ) ) : A --> CC ) |
220 |
219 2 18
|
fdmfifsupp |
|- ( ph -> ( k e. A |-> ( F ` k ) ) finSupp 0 ) |
221 |
53 5 216 217 218 2 143 109 220
|
gsummulc2 |
|- ( ph -> ( CCfld gsum ( k e. A |-> ( ( 1 / ( # ` A ) ) x. ( F ` k ) ) ) ) = ( ( 1 / ( # ` A ) ) x. ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) ) ) |
222 |
|
fss |
|- ( ( F : A --> RR+ /\ RR+ C_ RR ) -> F : A --> RR ) |
223 |
4 118 222
|
sylancl |
|- ( ph -> F : A --> RR ) |
224 |
4 2 18
|
fdmfifsupp |
|- ( ph -> F finSupp 0 ) |
225 |
5 8 2 12 223 224
|
gsumsubgcl |
|- ( ph -> ( CCfld gsum F ) e. RR ) |
226 |
225
|
recnd |
|- ( ph -> ( CCfld gsum F ) e. CC ) |
227 |
226 25 26
|
divrec2d |
|- ( ph -> ( ( CCfld gsum F ) / ( # ` A ) ) = ( ( 1 / ( # ` A ) ) x. ( CCfld gsum F ) ) ) |
228 |
108
|
oveq2d |
|- ( ph -> ( ( 1 / ( # ` A ) ) x. ( CCfld gsum F ) ) = ( ( 1 / ( # ` A ) ) x. ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) ) ) |
229 |
227 228
|
eqtr2d |
|- ( ph -> ( ( 1 / ( # ` A ) ) x. ( CCfld gsum ( k e. A |-> ( F ` k ) ) ) ) = ( ( CCfld gsum F ) / ( # ` A ) ) ) |
230 |
215 221 229
|
3eqtrd |
|- ( ph -> ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) ) = ( ( CCfld gsum F ) / ( # ` A ) ) ) |
231 |
230 152
|
oveq12d |
|- ( ph -> ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) = ( ( ( CCfld gsum F ) / ( # ` A ) ) / 1 ) ) |
232 |
225 24
|
nndivred |
|- ( ph -> ( ( CCfld gsum F ) / ( # ` A ) ) e. RR ) |
233 |
232
|
recnd |
|- ( ph -> ( ( CCfld gsum F ) / ( # ` A ) ) e. CC ) |
234 |
233
|
div1d |
|- ( ph -> ( ( ( CCfld gsum F ) / ( # ` A ) ) / 1 ) = ( ( CCfld gsum F ) / ( # ` A ) ) ) |
235 |
231 234
|
eqtrd |
|- ( ph -> ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) = ( ( CCfld gsum F ) / ( # ` A ) ) ) |
236 |
235
|
fveq2d |
|- ( ph -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) ) = ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) |
237 |
|
fveq2 |
|- ( w = ( ( CCfld gsum F ) / ( # ` A ) ) -> ( log ` w ) = ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) |
238 |
237
|
negeqd |
|- ( w = ( ( CCfld gsum F ) / ( # ` A ) ) -> -u ( log ` w ) = -u ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) |
239 |
|
negex |
|- -u ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) e. _V |
240 |
238 179 239
|
fvmpt |
|- ( ( ( CCfld gsum F ) / ( # ` A ) ) e. RR+ -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( CCfld gsum F ) / ( # ` A ) ) ) = -u ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) |
241 |
115 240
|
syl |
|- ( ph -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( CCfld gsum F ) / ( # ` A ) ) ) = -u ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) |
242 |
236 241
|
eqtrd |
|- ( ph -> ( ( w e. RR+ |-> -u ( log ` w ) ) ` ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. F ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) ) = -u ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) |
243 |
53 5 216 217 218 2 143 32 19
|
gsummulc2 |
|- ( ph -> ( CCfld gsum ( k e. A |-> ( ( 1 / ( # ` A ) ) x. -u ( log ` ( F ` k ) ) ) ) ) = ( ( 1 / ( # ` A ) ) x. ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) ) ) |
244 |
|
negex |
|- -u ( log ` ( F ` k ) ) e. _V |
245 |
244
|
a1i |
|- ( ( ph /\ k e. A ) -> -u ( log ` ( F ` k ) ) e. _V ) |
246 |
|
eqidd |
|- ( ph -> ( w e. RR+ |-> -u ( log ` w ) ) = ( w e. RR+ |-> -u ( log ` w ) ) ) |
247 |
|
fveq2 |
|- ( w = ( F ` k ) -> ( log ` w ) = ( log ` ( F ` k ) ) ) |
248 |
247
|
negeqd |
|- ( w = ( F ` k ) -> -u ( log ` w ) = -u ( log ` ( F ` k ) ) ) |
249 |
13 37 246 248
|
fmptco |
|- ( ph -> ( ( w e. RR+ |-> -u ( log ` w ) ) o. F ) = ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) |
250 |
2 212 245 213 249
|
offval2 |
|- ( ph -> ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. ( ( w e. RR+ |-> -u ( log ` w ) ) o. F ) ) = ( k e. A |-> ( ( 1 / ( # ` A ) ) x. -u ( log ` ( F ` k ) ) ) ) ) |
251 |
250
|
oveq2d |
|- ( ph -> ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. ( ( w e. RR+ |-> -u ( log ` w ) ) o. F ) ) ) = ( CCfld gsum ( k e. A |-> ( ( 1 / ( # ` A ) ) x. -u ( log ` ( F ` k ) ) ) ) ) ) |
252 |
21 25 26
|
divrec2d |
|- ( ph -> ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) = ( ( 1 / ( # ` A ) ) x. ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) ) ) |
253 |
243 251 252
|
3eqtr4d |
|- ( ph -> ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. ( ( w e. RR+ |-> -u ( log ` w ) ) o. F ) ) ) = ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) ) |
254 |
253 152
|
oveq12d |
|- ( ph -> ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. ( ( w e. RR+ |-> -u ( log ` w ) ) o. F ) ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) = ( ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) / 1 ) ) |
255 |
117
|
recnd |
|- ( ph -> ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) e. CC ) |
256 |
255
|
div1d |
|- ( ph -> ( ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) / 1 ) = ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) ) |
257 |
254 256
|
eqtrd |
|- ( ph -> ( ( CCfld gsum ( ( A X. { ( 1 / ( # ` A ) ) } ) oF x. ( ( w e. RR+ |-> -u ( log ` w ) ) o. F ) ) ) / ( CCfld gsum ( A X. { ( 1 / ( # ` A ) ) } ) ) ) = ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) ) |
258 |
211 242 257
|
3brtr3d |
|- ( ph -> -u ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) <_ ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) ) |
259 |
116 117 258
|
lenegcon1d |
|- ( ph -> -u ( ( CCfld gsum ( k e. A |-> -u ( log ` ( F ` k ) ) ) ) / ( # ` A ) ) <_ ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) |
260 |
107 259
|
eqbrtrrd |
|- ( ph -> ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) <_ ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) |
261 |
131 104
|
remulcld |
|- ( ph -> ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) e. RR ) |
262 |
|
efle |
|- ( ( ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) e. RR /\ ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) e. RR ) -> ( ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) <_ ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) <-> ( exp ` ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) ) <_ ( exp ` ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) ) ) |
263 |
261 116 262
|
syl2anc |
|- ( ph -> ( ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) <_ ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) <-> ( exp ` ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) ) <_ ( exp ` ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) ) ) |
264 |
260 263
|
mpbid |
|- ( ph -> ( exp ` ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) ) <_ ( exp ` ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) ) |
265 |
100
|
rpcnd |
|- ( ph -> ( M gsum F ) e. CC ) |
266 |
100
|
rpne0d |
|- ( ph -> ( M gsum F ) =/= 0 ) |
267 |
265 266 143
|
cxpefd |
|- ( ph -> ( ( M gsum F ) ^c ( 1 / ( # ` A ) ) ) = ( exp ` ( ( 1 / ( # ` A ) ) x. ( log ` ( M gsum F ) ) ) ) ) |
268 |
115
|
reeflogd |
|- ( ph -> ( exp ` ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) = ( ( CCfld gsum F ) / ( # ` A ) ) ) |
269 |
268
|
eqcomd |
|- ( ph -> ( ( CCfld gsum F ) / ( # ` A ) ) = ( exp ` ( log ` ( ( CCfld gsum F ) / ( # ` A ) ) ) ) ) |
270 |
264 267 269
|
3brtr4d |
|- ( ph -> ( ( M gsum F ) ^c ( 1 / ( # ` A ) ) ) <_ ( ( CCfld gsum F ) / ( # ` A ) ) ) |