Metamath Proof Explorer


Theorem an13s

Description: Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006)

Ref Expression
Hypothesis an12s.1
|- ( ( ph /\ ( ps /\ ch ) ) -> th )
Assertion an13s
|- ( ( ch /\ ( ps /\ ph ) ) -> th )

Proof

Step Hyp Ref Expression
1 an12s.1
 |-  ( ( ph /\ ( ps /\ ch ) ) -> th )
2 1 exp32
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
3 2 com13
 |-  ( ch -> ( ps -> ( ph -> th ) ) )
4 3 imp32
 |-  ( ( ch /\ ( ps /\ ph ) ) -> th )