Metamath Proof Explorer


Theorem an31

Description: A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012) (Proof shortened by Wolf Lammen, 31-Dec-2012)

Ref Expression
Assertion an31
|- ( ( ( ph /\ ps ) /\ ch ) <-> ( ( ch /\ ps ) /\ ph ) )

Proof

Step Hyp Ref Expression
1 an13
 |-  ( ( ph /\ ( ps /\ ch ) ) <-> ( ch /\ ( ps /\ ph ) ) )
2 anass
 |-  ( ( ( ph /\ ps ) /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) )
3 anass
 |-  ( ( ( ch /\ ps ) /\ ph ) <-> ( ch /\ ( ps /\ ph ) ) )
4 1 2 3 3bitr4i
 |-  ( ( ( ph /\ ps ) /\ ch ) <-> ( ( ch /\ ps ) /\ ph ) )