Description: A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012) (Proof shortened by Wolf Lammen, 31-Dec-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | an31 | |- ( ( ( ph /\ ps ) /\ ch ) <-> ( ( ch /\ ps ) /\ ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an13 | |- ( ( ph /\ ( ps /\ ch ) ) <-> ( ch /\ ( ps /\ ph ) ) ) |
|
| 2 | anass | |- ( ( ( ph /\ ps ) /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) ) |
|
| 3 | anass | |- ( ( ( ch /\ ps ) /\ ph ) <-> ( ch /\ ( ps /\ ph ) ) ) |
|
| 4 | 1 2 3 | 3bitr4i | |- ( ( ( ph /\ ps ) /\ ch ) <-> ( ( ch /\ ps ) /\ ph ) ) |