Metamath Proof Explorer


Theorem an31s

Description: Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006)

Ref Expression
Hypothesis an32s.1
|- ( ( ( ph /\ ps ) /\ ch ) -> th )
Assertion an31s
|- ( ( ( ch /\ ps ) /\ ph ) -> th )

Proof

Step Hyp Ref Expression
1 an32s.1
 |-  ( ( ( ph /\ ps ) /\ ch ) -> th )
2 1 exp31
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
3 2 com13
 |-  ( ch -> ( ps -> ( ph -> th ) ) )
4 3 imp31
 |-  ( ( ( ch /\ ps ) /\ ph ) -> th )