Step |
Hyp |
Ref |
Expression |
1 |
|
anandi |
|- ( ( ph /\ ( ( ps /\ ch ) /\ th ) ) <-> ( ( ph /\ ( ps /\ ch ) ) /\ ( ph /\ th ) ) ) |
2 |
|
anandi |
|- ( ( ph /\ ( ps /\ ch ) ) <-> ( ( ph /\ ps ) /\ ( ph /\ ch ) ) ) |
3 |
1 2
|
bianbi |
|- ( ( ph /\ ( ( ps /\ ch ) /\ th ) ) <-> ( ( ( ph /\ ps ) /\ ( ph /\ ch ) ) /\ ( ph /\ th ) ) ) |
4 |
|
df-3an |
|- ( ( ps /\ ch /\ th ) <-> ( ( ps /\ ch ) /\ th ) ) |
5 |
4
|
anbi2i |
|- ( ( ph /\ ( ps /\ ch /\ th ) ) <-> ( ph /\ ( ( ps /\ ch ) /\ th ) ) ) |
6 |
|
df-3an |
|- ( ( ( ph /\ ps ) /\ ( ph /\ ch ) /\ ( ph /\ th ) ) <-> ( ( ( ph /\ ps ) /\ ( ph /\ ch ) ) /\ ( ph /\ th ) ) ) |
7 |
3 5 6
|
3bitr4i |
|- ( ( ph /\ ( ps /\ ch /\ th ) ) <-> ( ( ph /\ ps ) /\ ( ph /\ ch ) /\ ( ph /\ th ) ) ) |