| Step | Hyp | Ref | Expression | 
						
							| 1 |  | anandi |  |-  ( ( ph /\ ( ( ps /\ ch ) /\ th ) ) <-> ( ( ph /\ ( ps /\ ch ) ) /\ ( ph /\ th ) ) ) | 
						
							| 2 |  | anandi |  |-  ( ( ph /\ ( ps /\ ch ) ) <-> ( ( ph /\ ps ) /\ ( ph /\ ch ) ) ) | 
						
							| 3 | 1 2 | bianbi |  |-  ( ( ph /\ ( ( ps /\ ch ) /\ th ) ) <-> ( ( ( ph /\ ps ) /\ ( ph /\ ch ) ) /\ ( ph /\ th ) ) ) | 
						
							| 4 |  | df-3an |  |-  ( ( ps /\ ch /\ th ) <-> ( ( ps /\ ch ) /\ th ) ) | 
						
							| 5 | 4 | anbi2i |  |-  ( ( ph /\ ( ps /\ ch /\ th ) ) <-> ( ph /\ ( ( ps /\ ch ) /\ th ) ) ) | 
						
							| 6 |  | df-3an |  |-  ( ( ( ph /\ ps ) /\ ( ph /\ ch ) /\ ( ph /\ th ) ) <-> ( ( ( ph /\ ps ) /\ ( ph /\ ch ) ) /\ ( ph /\ th ) ) ) | 
						
							| 7 | 3 5 6 | 3bitr4i |  |-  ( ( ph /\ ( ps /\ ch /\ th ) ) <-> ( ( ph /\ ps ) /\ ( ph /\ ch ) /\ ( ph /\ th ) ) ) |