Metamath Proof Explorer


Theorem an42s

Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995)

Ref Expression
Hypothesis an41r3s.1
|- ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) -> ta )
Assertion an42s
|- ( ( ( ph /\ ch ) /\ ( th /\ ps ) ) -> ta )

Proof

Step Hyp Ref Expression
1 an41r3s.1
 |-  ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) -> ta )
2 1 an4s
 |-  ( ( ( ph /\ ch ) /\ ( ps /\ th ) ) -> ta )
3 2 ancom2s
 |-  ( ( ( ph /\ ch ) /\ ( th /\ ps ) ) -> ta )