Metamath Proof Explorer


Theorem an6

Description: Rearrangement of 6 conjuncts. (Contributed by NM, 13-Mar-1995)

Ref Expression
Assertion an6
|- ( ( ( ph /\ ps /\ ch ) /\ ( th /\ ta /\ et ) ) <-> ( ( ph /\ th ) /\ ( ps /\ ta ) /\ ( ch /\ et ) ) )

Proof

Step Hyp Ref Expression
1 an4
 |-  ( ( ( ( ph /\ ps ) /\ ch ) /\ ( ( th /\ ta ) /\ et ) ) <-> ( ( ( ph /\ ps ) /\ ( th /\ ta ) ) /\ ( ch /\ et ) ) )
2 an4
 |-  ( ( ( ph /\ ps ) /\ ( th /\ ta ) ) <-> ( ( ph /\ th ) /\ ( ps /\ ta ) ) )
3 2 anbi1i
 |-  ( ( ( ( ph /\ ps ) /\ ( th /\ ta ) ) /\ ( ch /\ et ) ) <-> ( ( ( ph /\ th ) /\ ( ps /\ ta ) ) /\ ( ch /\ et ) ) )
4 1 3 bitri
 |-  ( ( ( ( ph /\ ps ) /\ ch ) /\ ( ( th /\ ta ) /\ et ) ) <-> ( ( ( ph /\ th ) /\ ( ps /\ ta ) ) /\ ( ch /\ et ) ) )
5 df-3an
 |-  ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) )
6 df-3an
 |-  ( ( th /\ ta /\ et ) <-> ( ( th /\ ta ) /\ et ) )
7 5 6 anbi12i
 |-  ( ( ( ph /\ ps /\ ch ) /\ ( th /\ ta /\ et ) ) <-> ( ( ( ph /\ ps ) /\ ch ) /\ ( ( th /\ ta ) /\ et ) ) )
8 df-3an
 |-  ( ( ( ph /\ th ) /\ ( ps /\ ta ) /\ ( ch /\ et ) ) <-> ( ( ( ph /\ th ) /\ ( ps /\ ta ) ) /\ ( ch /\ et ) ) )
9 4 7 8 3bitr4i
 |-  ( ( ( ph /\ ps /\ ch ) /\ ( th /\ ta /\ et ) ) <-> ( ( ph /\ th ) /\ ( ps /\ ta ) /\ ( ch /\ et ) ) )