Step |
Hyp |
Ref |
Expression |
1 |
|
an4 |
|- ( ( ( ( ph /\ ps ) /\ ch ) /\ ( ( th /\ ta ) /\ et ) ) <-> ( ( ( ph /\ ps ) /\ ( th /\ ta ) ) /\ ( ch /\ et ) ) ) |
2 |
|
an4 |
|- ( ( ( ph /\ ps ) /\ ( th /\ ta ) ) <-> ( ( ph /\ th ) /\ ( ps /\ ta ) ) ) |
3 |
2
|
anbi1i |
|- ( ( ( ( ph /\ ps ) /\ ( th /\ ta ) ) /\ ( ch /\ et ) ) <-> ( ( ( ph /\ th ) /\ ( ps /\ ta ) ) /\ ( ch /\ et ) ) ) |
4 |
1 3
|
bitri |
|- ( ( ( ( ph /\ ps ) /\ ch ) /\ ( ( th /\ ta ) /\ et ) ) <-> ( ( ( ph /\ th ) /\ ( ps /\ ta ) ) /\ ( ch /\ et ) ) ) |
5 |
|
df-3an |
|- ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) ) |
6 |
|
df-3an |
|- ( ( th /\ ta /\ et ) <-> ( ( th /\ ta ) /\ et ) ) |
7 |
5 6
|
anbi12i |
|- ( ( ( ph /\ ps /\ ch ) /\ ( th /\ ta /\ et ) ) <-> ( ( ( ph /\ ps ) /\ ch ) /\ ( ( th /\ ta ) /\ et ) ) ) |
8 |
|
df-3an |
|- ( ( ( ph /\ th ) /\ ( ps /\ ta ) /\ ( ch /\ et ) ) <-> ( ( ( ph /\ th ) /\ ( ps /\ ta ) ) /\ ( ch /\ et ) ) ) |
9 |
4 7 8
|
3bitr4i |
|- ( ( ( ph /\ ps /\ ch ) /\ ( th /\ ta /\ et ) ) <-> ( ( ph /\ th ) /\ ( ps /\ ta ) /\ ( ch /\ et ) ) ) |