Metamath Proof Explorer


Theorem anabss3

Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996) (Proof shortened by Wolf Lammen, 1-Jan-2013)

Ref Expression
Hypothesis anabss3.1
|- ( ( ( ph /\ ps ) /\ ps ) -> ch )
Assertion anabss3
|- ( ( ph /\ ps ) -> ch )

Proof

Step Hyp Ref Expression
1 anabss3.1
 |-  ( ( ( ph /\ ps ) /\ ps ) -> ch )
2 1 anasss
 |-  ( ( ph /\ ( ps /\ ps ) ) -> ch )
3 2 anabsan2
 |-  ( ( ph /\ ps ) -> ch )