Metamath Proof Explorer


Theorem anabss4

Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996)

Ref Expression
Hypothesis anabss4.1
|- ( ( ( ps /\ ph ) /\ ps ) -> ch )
Assertion anabss4
|- ( ( ph /\ ps ) -> ch )

Proof

Step Hyp Ref Expression
1 anabss4.1
 |-  ( ( ( ps /\ ph ) /\ ps ) -> ch )
2 1 anabss1
 |-  ( ( ps /\ ph ) -> ch )
3 2 ancoms
 |-  ( ( ph /\ ps ) -> ch )