Metamath Proof Explorer


Theorem anabss5

Description: Absorption of antecedent into conjunction. (Contributed by NM, 10-May-1994) (Proof shortened by Wolf Lammen, 1-Jan-2013)

Ref Expression
Hypothesis anabss5.1
|- ( ( ph /\ ( ph /\ ps ) ) -> ch )
Assertion anabss5
|- ( ( ph /\ ps ) -> ch )

Proof

Step Hyp Ref Expression
1 anabss5.1
 |-  ( ( ph /\ ( ph /\ ps ) ) -> ch )
2 1 anassrs
 |-  ( ( ( ph /\ ph ) /\ ps ) -> ch )
3 2 anabsan
 |-  ( ( ph /\ ps ) -> ch )