Metamath Proof Explorer


Theorem anandirs

Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004)

Ref Expression
Hypothesis anandirs.1
|- ( ( ( ph /\ ch ) /\ ( ps /\ ch ) ) -> ta )
Assertion anandirs
|- ( ( ( ph /\ ps ) /\ ch ) -> ta )

Proof

Step Hyp Ref Expression
1 anandirs.1
 |-  ( ( ( ph /\ ch ) /\ ( ps /\ ch ) ) -> ta )
2 1 an4s
 |-  ( ( ( ph /\ ps ) /\ ( ch /\ ch ) ) -> ta )
3 2 anabsan2
 |-  ( ( ( ph /\ ps ) /\ ch ) -> ta )