Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | anandis.1 | |- ( ( ( ph /\ ps ) /\ ( ph /\ ch ) ) -> ta ) |
|
| Assertion | anandis | |- ( ( ph /\ ( ps /\ ch ) ) -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandis.1 | |- ( ( ( ph /\ ps ) /\ ( ph /\ ch ) ) -> ta ) |
|
| 2 | 1 | an4s | |- ( ( ( ph /\ ph ) /\ ( ps /\ ch ) ) -> ta ) |
| 3 | 2 | anabsan | |- ( ( ph /\ ( ps /\ ch ) ) -> ta ) |