Metamath Proof Explorer


Theorem anandis

Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004)

Ref Expression
Hypothesis anandis.1
|- ( ( ( ph /\ ps ) /\ ( ph /\ ch ) ) -> ta )
Assertion anandis
|- ( ( ph /\ ( ps /\ ch ) ) -> ta )

Proof

Step Hyp Ref Expression
1 anandis.1
 |-  ( ( ( ph /\ ps ) /\ ( ph /\ ch ) ) -> ta )
2 1 an4s
 |-  ( ( ( ph /\ ph ) /\ ( ps /\ ch ) ) -> ta )
3 2 anabsan
 |-  ( ( ph /\ ( ps /\ ch ) ) -> ta )