Description: Commutative-associative law for conjunction in an antecedent. (Contributed by Jeff Madsen, 19-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | anass1rs.1 | |- ( ( ph /\ ( ps /\ ch ) ) -> th ) |
|
Assertion | anass1rs | |- ( ( ( ph /\ ch ) /\ ps ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass1rs.1 | |- ( ( ph /\ ( ps /\ ch ) ) -> th ) |
|
2 | 1 | anassrs | |- ( ( ( ph /\ ps ) /\ ch ) -> th ) |
3 | 2 | an32s | |- ( ( ( ph /\ ch ) /\ ps ) -> th ) |