Metamath Proof Explorer


Theorem anass1rs

Description: Commutative-associative law for conjunction in an antecedent. (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Hypothesis anass1rs.1
|- ( ( ph /\ ( ps /\ ch ) ) -> th )
Assertion anass1rs
|- ( ( ( ph /\ ch ) /\ ps ) -> th )

Proof

Step Hyp Ref Expression
1 anass1rs.1
 |-  ( ( ph /\ ( ps /\ ch ) ) -> th )
2 1 anassrs
 |-  ( ( ( ph /\ ps ) /\ ch ) -> th )
3 2 an32s
 |-  ( ( ( ph /\ ch ) /\ ps ) -> th )