Metamath Proof Explorer


Theorem anbi1

Description: Introduce a right conjunct to both sides of a logical equivalence. Theorem *4.36 of WhiteheadRussell p. 118. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion anbi1
|- ( ( ph <-> ps ) -> ( ( ph /\ ch ) <-> ( ps /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( ( ph <-> ps ) -> ( ph <-> ps ) )
2 1 anbi1d
 |-  ( ( ph <-> ps ) -> ( ( ph /\ ch ) <-> ( ps /\ ch ) ) )