Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 26-May-1993)
Ref | Expression | ||
---|---|---|---|
Hypotheses | anbi12d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
anbi12d.2 | |- ( ph -> ( th <-> ta ) ) |
||
Assertion | anbi12d | |- ( ph -> ( ( ps /\ th ) <-> ( ch /\ ta ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | anbi12d.2 | |- ( ph -> ( th <-> ta ) ) |
|
3 | 1 | anbi1d | |- ( ph -> ( ( ps /\ th ) <-> ( ch /\ th ) ) ) |
4 | 2 | anbi2d | |- ( ph -> ( ( ch /\ th ) <-> ( ch /\ ta ) ) ) |
5 | 3 4 | bitrd | |- ( ph -> ( ( ps /\ th ) <-> ( ch /\ ta ) ) ) |