Metamath Proof Explorer


Theorem anbi12d

Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 26-May-1993)

Ref Expression
Hypotheses anbi12d.1
|- ( ph -> ( ps <-> ch ) )
anbi12d.2
|- ( ph -> ( th <-> ta ) )
Assertion anbi12d
|- ( ph -> ( ( ps /\ th ) <-> ( ch /\ ta ) ) )

Proof

Step Hyp Ref Expression
1 anbi12d.1
 |-  ( ph -> ( ps <-> ch ) )
2 anbi12d.2
 |-  ( ph -> ( th <-> ta ) )
3 1 anbi1d
 |-  ( ph -> ( ( ps /\ th ) <-> ( ch /\ th ) ) )
4 2 anbi2d
 |-  ( ph -> ( ( ch /\ th ) <-> ( ch /\ ta ) ) )
5 3 4 bitrd
 |-  ( ph -> ( ( ps /\ th ) <-> ( ch /\ ta ) ) )