Description: Conjoin both sides of two equivalences. (Contributed by NM, 12-Mar-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | anbi12.1 | |- ( ph <-> ps ) |
|
| anbi12.2 | |- ( ch <-> th ) |
||
| Assertion | anbi12i | |- ( ( ph /\ ch ) <-> ( ps /\ th ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi12.1 | |- ( ph <-> ps ) |
|
| 2 | anbi12.2 | |- ( ch <-> th ) |
|
| 3 | 2 | anbi2i | |- ( ( ph /\ ch ) <-> ( ph /\ th ) ) |
| 4 | 3 1 | bianbi | |- ( ( ph /\ ch ) <-> ( ps /\ th ) ) |