Metamath Proof Explorer


Theorem anbi2ci

Description: Variant of anbi2i with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Andrew Salmon, 14-Jun-2011)

Ref Expression
Hypothesis anbi.1
|- ( ph <-> ps )
Assertion anbi2ci
|- ( ( ph /\ ch ) <-> ( ch /\ ps ) )

Proof

Step Hyp Ref Expression
1 anbi.1
 |-  ( ph <-> ps )
2 1 anbi1i
 |-  ( ( ph /\ ch ) <-> ( ps /\ ch ) )
3 2 biancomi
 |-  ( ( ph /\ ch ) <-> ( ch /\ ps ) )