Metamath Proof Explorer


Theorem anbiim

Description: Adding biconditional when antecedents are conjuncted. (Contributed by metakunt, 16-Apr-2024) (Proof shortened by Wolf Lammen, 7-May-2025)

Ref Expression
Hypotheses anbiim.1
|- ( ph -> ( ch -> th ) )
anbiim.2
|- ( ps -> ( th -> ch ) )
Assertion anbiim
|- ( ( ph /\ ps ) -> ( ch <-> th ) )

Proof

Step Hyp Ref Expression
1 anbiim.1
 |-  ( ph -> ( ch -> th ) )
2 anbiim.2
 |-  ( ps -> ( th -> ch ) )
3 1 adantr
 |-  ( ( ph /\ ps ) -> ( ch -> th ) )
4 2 adantl
 |-  ( ( ph /\ ps ) -> ( th -> ch ) )
5 3 4 impbid
 |-  ( ( ph /\ ps ) -> ( ch <-> th ) )