Description: Conjoin antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994) (Proof shortened by Wolf Lammen, 14-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | anc2l | |- ( ( ph -> ( ps -> ch ) ) -> ( ph -> ( ps -> ( ph /\ ch ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.42 | |- ( ( ph -> ( ps -> ch ) ) <-> ( ph -> ( ps -> ( ph /\ ch ) ) ) ) |
|
2 | 1 | biimpi | |- ( ( ph -> ( ps -> ch ) ) -> ( ph -> ( ps -> ( ph /\ ch ) ) ) ) |