Description: Conjoin antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994) (Proof shortened by Wolf Lammen, 14-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | anc2l | |- ( ( ph -> ( ps -> ch ) ) -> ( ph -> ( ps -> ( ph /\ ch ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.42 | |- ( ( ph -> ( ps -> ch ) ) <-> ( ph -> ( ps -> ( ph /\ ch ) ) ) ) |
|
| 2 | 1 | biimpi | |- ( ( ph -> ( ps -> ch ) ) -> ( ph -> ( ps -> ( ph /\ ch ) ) ) ) |