Metamath Proof Explorer


Theorem anc2l

Description: Conjoin antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994) (Proof shortened by Wolf Lammen, 14-Jul-2013)

Ref Expression
Assertion anc2l
|- ( ( ph -> ( ps -> ch ) ) -> ( ph -> ( ps -> ( ph /\ ch ) ) ) )

Proof

Step Hyp Ref Expression
1 pm5.42
 |-  ( ( ph -> ( ps -> ch ) ) <-> ( ph -> ( ps -> ( ph /\ ch ) ) ) )
2 1 biimpi
 |-  ( ( ph -> ( ps -> ch ) ) -> ( ph -> ( ps -> ( ph /\ ch ) ) ) )