Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994) (Proof shortened by Wolf Lammen, 7-Dec-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | anc2ri.1 | |- ( ph -> ( ps -> ch ) ) | |
| Assertion | anc2ri | |- ( ph -> ( ps -> ( ch /\ ph ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anc2ri.1 | |- ( ph -> ( ps -> ch ) ) | |
| 2 | id | |- ( ph -> ph ) | |
| 3 | 1 2 | jctird | |- ( ph -> ( ps -> ( ch /\ ph ) ) ) |