Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994) (Proof shortened by Wolf Lammen, 1-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ancld.1 | |- ( ph -> ( ps -> ch ) ) |
|
Assertion | ancld | |- ( ph -> ( ps -> ( ps /\ ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancld.1 | |- ( ph -> ( ps -> ch ) ) |
|
2 | idd | |- ( ph -> ( ps -> ps ) ) |
|
3 | 2 1 | jcad | |- ( ph -> ( ps -> ( ps /\ ch ) ) ) |