Metamath Proof Explorer


Theorem ancli

Description: Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993)

Ref Expression
Hypothesis ancli.1
|- ( ph -> ps )
Assertion ancli
|- ( ph -> ( ph /\ ps ) )

Proof

Step Hyp Ref Expression
1 ancli.1
 |-  ( ph -> ps )
2 id
 |-  ( ph -> ph )
3 2 1 jca
 |-  ( ph -> ( ph /\ ps ) )