Metamath Proof Explorer


Theorem ancom1s

Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006) (Proof shortened by Wolf Lammen, 24-Nov-2012)

Ref Expression
Hypothesis an32s.1
|- ( ( ( ph /\ ps ) /\ ch ) -> th )
Assertion ancom1s
|- ( ( ( ps /\ ph ) /\ ch ) -> th )

Proof

Step Hyp Ref Expression
1 an32s.1
 |-  ( ( ( ph /\ ps ) /\ ch ) -> th )
2 pm3.22
 |-  ( ( ps /\ ph ) -> ( ph /\ ps ) )
3 2 1 sylan
 |-  ( ( ( ps /\ ph ) /\ ch ) -> th )