Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006) (Proof shortened by Wolf Lammen, 24-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | an12s.1 | |- ( ( ph /\ ( ps /\ ch ) ) -> th ) |
|
| Assertion | ancom2s | |- ( ( ph /\ ( ch /\ ps ) ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an12s.1 | |- ( ( ph /\ ( ps /\ ch ) ) -> th ) |
|
| 2 | pm3.22 | |- ( ( ch /\ ps ) -> ( ps /\ ch ) ) |
|
| 3 | 2 1 | sylan2 | |- ( ( ph /\ ( ch /\ ps ) ) -> th ) |