Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ancomd.1 | |- ( ph -> ( ps /\ ch ) ) |
|
| Assertion | ancomd | |- ( ph -> ( ch /\ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomd.1 | |- ( ph -> ( ps /\ ch ) ) |
|
| 2 | ancom | |- ( ( ps /\ ch ) <-> ( ch /\ ps ) ) |
|
| 3 | 1 2 | sylib | |- ( ph -> ( ch /\ ps ) ) |