Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994) (Proof shortened by Wolf Lammen, 1-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ancrd.1 | |- ( ph -> ( ps -> ch ) ) |
|
Assertion | ancrd | |- ( ph -> ( ps -> ( ch /\ ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancrd.1 | |- ( ph -> ( ps -> ch ) ) |
|
2 | idd | |- ( ph -> ( ps -> ps ) ) |
|
3 | 1 2 | jcad | |- ( ph -> ( ps -> ( ch /\ ps ) ) ) |