Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994) (Proof shortened by Wolf Lammen, 1-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ancrd.1 | |- ( ph -> ( ps -> ch ) ) |
|
| Assertion | ancrd | |- ( ph -> ( ps -> ( ch /\ ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancrd.1 | |- ( ph -> ( ps -> ch ) ) |
|
| 2 | idd | |- ( ph -> ( ps -> ps ) ) |
|
| 3 | 1 2 | jcad | |- ( ph -> ( ps -> ( ch /\ ps ) ) ) |