Step |
Hyp |
Ref |
Expression |
1 |
|
andir |
|- ( ( ( ph \/ ps ) /\ ( ch \/ th ) ) <-> ( ( ph /\ ( ch \/ th ) ) \/ ( ps /\ ( ch \/ th ) ) ) ) |
2 |
|
andi |
|- ( ( ph /\ ( ch \/ th ) ) <-> ( ( ph /\ ch ) \/ ( ph /\ th ) ) ) |
3 |
|
andi |
|- ( ( ps /\ ( ch \/ th ) ) <-> ( ( ps /\ ch ) \/ ( ps /\ th ) ) ) |
4 |
2 3
|
orbi12i |
|- ( ( ( ph /\ ( ch \/ th ) ) \/ ( ps /\ ( ch \/ th ) ) ) <-> ( ( ( ph /\ ch ) \/ ( ph /\ th ) ) \/ ( ( ps /\ ch ) \/ ( ps /\ th ) ) ) ) |
5 |
1 4
|
bitri |
|- ( ( ( ph \/ ps ) /\ ( ch \/ th ) ) <-> ( ( ( ph /\ ch ) \/ ( ph /\ th ) ) \/ ( ( ps /\ ch ) \/ ( ps /\ th ) ) ) ) |