Metamath Proof Explorer


Theorem andi

Description: Distributive law for conjunction. Theorem *4.4 of WhiteheadRussell p. 118. (Contributed by NM, 21-Jun-1993) (Proof shortened by Wolf Lammen, 5-Jan-2013)

Ref Expression
Assertion andi
|- ( ( ph /\ ( ps \/ ch ) ) <-> ( ( ph /\ ps ) \/ ( ph /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 orc
 |-  ( ( ph /\ ps ) -> ( ( ph /\ ps ) \/ ( ph /\ ch ) ) )
2 olc
 |-  ( ( ph /\ ch ) -> ( ( ph /\ ps ) \/ ( ph /\ ch ) ) )
3 1 2 jaodan
 |-  ( ( ph /\ ( ps \/ ch ) ) -> ( ( ph /\ ps ) \/ ( ph /\ ch ) ) )
4 orc
 |-  ( ps -> ( ps \/ ch ) )
5 4 anim2i
 |-  ( ( ph /\ ps ) -> ( ph /\ ( ps \/ ch ) ) )
6 olc
 |-  ( ch -> ( ps \/ ch ) )
7 6 anim2i
 |-  ( ( ph /\ ch ) -> ( ph /\ ( ps \/ ch ) ) )
8 5 7 jaoi
 |-  ( ( ( ph /\ ps ) \/ ( ph /\ ch ) ) -> ( ph /\ ( ps \/ ch ) ) )
9 3 8 impbii
 |-  ( ( ph /\ ( ps \/ ch ) ) <-> ( ( ph /\ ps ) \/ ( ph /\ ch ) ) )