Metamath Proof Explorer


Theorem andnand1

Description: Double and in terms of double nand. (Contributed by Anthony Hart, 2-Sep-2011)

Ref Expression
Assertion andnand1
|- ( ( ph /\ ps /\ ch ) <-> ( ( ph -/\ ps -/\ ch ) -/\ ( ph -/\ ps -/\ ch ) ) )

Proof

Step Hyp Ref Expression
1 3anass
 |-  ( ( ph /\ ps /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) )
2 pm4.63
 |-  ( -. ( ps -> -. ch ) <-> ( ps /\ ch ) )
3 2 anbi2i
 |-  ( ( ph /\ -. ( ps -> -. ch ) ) <-> ( ph /\ ( ps /\ ch ) ) )
4 annim
 |-  ( ( ph /\ -. ( ps -> -. ch ) ) <-> -. ( ph -> ( ps -> -. ch ) ) )
5 1 3 4 3bitr2i
 |-  ( ( ph /\ ps /\ ch ) <-> -. ( ph -> ( ps -> -. ch ) ) )
6 df-3nand
 |-  ( ( ph -/\ ps -/\ ch ) <-> ( ph -> ( ps -> -. ch ) ) )
7 6 notbii
 |-  ( -. ( ph -/\ ps -/\ ch ) <-> -. ( ph -> ( ps -> -. ch ) ) )
8 nannot
 |-  ( -. ( ph -/\ ps -/\ ch ) <-> ( ( ph -/\ ps -/\ ch ) -/\ ( ph -/\ ps -/\ ch ) ) )
9 5 7 8 3bitr2i
 |-  ( ( ph /\ ps /\ ch ) <-> ( ( ph -/\ ps -/\ ch ) -/\ ( ph -/\ ps -/\ ch ) ) )