Step |
Hyp |
Ref |
Expression |
1 |
|
ang.1 |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
2 |
|
simpl3 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> C e. CC ) |
3 |
|
simpl2 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> B e. CC ) |
4 |
2 3
|
subcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( C - B ) e. CC ) |
5 |
|
simpr2 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> B =/= C ) |
6 |
5
|
necomd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> C =/= B ) |
7 |
2 3 6
|
subne0d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( C - B ) =/= 0 ) |
8 |
|
simpl1 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> A e. CC ) |
9 |
8 3
|
subcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( A - B ) e. CC ) |
10 |
|
simpr1 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> A =/= B ) |
11 |
8 3 10
|
subne0d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( A - B ) =/= 0 ) |
12 |
1
|
angneg |
|- ( ( ( ( C - B ) e. CC /\ ( C - B ) =/= 0 ) /\ ( ( A - B ) e. CC /\ ( A - B ) =/= 0 ) ) -> ( -u ( C - B ) F -u ( A - B ) ) = ( ( C - B ) F ( A - B ) ) ) |
13 |
4 7 9 11 12
|
syl22anc |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( -u ( C - B ) F -u ( A - B ) ) = ( ( C - B ) F ( A - B ) ) ) |
14 |
2 3
|
negsubdi2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> -u ( C - B ) = ( B - C ) ) |
15 |
3 2 8
|
nnncan2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( ( B - A ) - ( C - A ) ) = ( B - C ) ) |
16 |
14 15
|
eqtr4d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> -u ( C - B ) = ( ( B - A ) - ( C - A ) ) ) |
17 |
8 3
|
negsubdi2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> -u ( A - B ) = ( B - A ) ) |
18 |
16 17
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( -u ( C - B ) F -u ( A - B ) ) = ( ( ( B - A ) - ( C - A ) ) F ( B - A ) ) ) |
19 |
13 18
|
eqtr3d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( ( C - B ) F ( A - B ) ) = ( ( ( B - A ) - ( C - A ) ) F ( B - A ) ) ) |
20 |
8 2
|
subcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( A - C ) e. CC ) |
21 |
|
simpr3 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> A =/= C ) |
22 |
8 2 21
|
subne0d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( A - C ) =/= 0 ) |
23 |
3 2
|
subcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( B - C ) e. CC ) |
24 |
3 2 5
|
subne0d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( B - C ) =/= 0 ) |
25 |
1
|
angneg |
|- ( ( ( ( A - C ) e. CC /\ ( A - C ) =/= 0 ) /\ ( ( B - C ) e. CC /\ ( B - C ) =/= 0 ) ) -> ( -u ( A - C ) F -u ( B - C ) ) = ( ( A - C ) F ( B - C ) ) ) |
26 |
20 22 23 24 25
|
syl22anc |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( -u ( A - C ) F -u ( B - C ) ) = ( ( A - C ) F ( B - C ) ) ) |
27 |
8 2
|
negsubdi2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> -u ( A - C ) = ( C - A ) ) |
28 |
3 2
|
negsubdi2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> -u ( B - C ) = ( C - B ) ) |
29 |
2 3 8
|
nnncan2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( ( C - A ) - ( B - A ) ) = ( C - B ) ) |
30 |
28 29
|
eqtr4d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> -u ( B - C ) = ( ( C - A ) - ( B - A ) ) ) |
31 |
27 30
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( -u ( A - C ) F -u ( B - C ) ) = ( ( C - A ) F ( ( C - A ) - ( B - A ) ) ) ) |
32 |
26 31
|
eqtr3d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( ( A - C ) F ( B - C ) ) = ( ( C - A ) F ( ( C - A ) - ( B - A ) ) ) ) |
33 |
19 32
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( ( ( C - B ) F ( A - B ) ) + ( ( A - C ) F ( B - C ) ) ) = ( ( ( ( B - A ) - ( C - A ) ) F ( B - A ) ) + ( ( C - A ) F ( ( C - A ) - ( B - A ) ) ) ) ) |
34 |
33
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( ( ( ( C - B ) F ( A - B ) ) + ( ( A - C ) F ( B - C ) ) ) + ( ( B - A ) F ( C - A ) ) ) = ( ( ( ( ( B - A ) - ( C - A ) ) F ( B - A ) ) + ( ( C - A ) F ( ( C - A ) - ( B - A ) ) ) ) + ( ( B - A ) F ( C - A ) ) ) ) |
35 |
3 8
|
subcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( B - A ) e. CC ) |
36 |
10
|
necomd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> B =/= A ) |
37 |
3 8 36
|
subne0d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( B - A ) =/= 0 ) |
38 |
2 8
|
subcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( C - A ) e. CC ) |
39 |
21
|
necomd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> C =/= A ) |
40 |
2 8 39
|
subne0d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( C - A ) =/= 0 ) |
41 |
3 2 8 5
|
subneintr2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( B - A ) =/= ( C - A ) ) |
42 |
1
|
ang180lem5 |
|- ( ( ( ( B - A ) e. CC /\ ( B - A ) =/= 0 ) /\ ( ( C - A ) e. CC /\ ( C - A ) =/= 0 ) /\ ( B - A ) =/= ( C - A ) ) -> ( ( ( ( ( B - A ) - ( C - A ) ) F ( B - A ) ) + ( ( C - A ) F ( ( C - A ) - ( B - A ) ) ) ) + ( ( B - A ) F ( C - A ) ) ) e. { -u _pi , _pi } ) |
43 |
35 37 38 40 41 42
|
syl221anc |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( ( ( ( ( B - A ) - ( C - A ) ) F ( B - A ) ) + ( ( C - A ) F ( ( C - A ) - ( B - A ) ) ) ) + ( ( B - A ) F ( C - A ) ) ) e. { -u _pi , _pi } ) |
44 |
34 43
|
eqeltrd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= B /\ B =/= C /\ A =/= C ) ) -> ( ( ( ( C - B ) F ( A - B ) ) + ( ( A - C ) F ( B - C ) ) ) + ( ( B - A ) F ( C - A ) ) ) e. { -u _pi , _pi } ) |