| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ang.1 |  |-  F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) | 
						
							| 2 |  | ang180lem1.2 |  |-  T = ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) | 
						
							| 3 |  | ang180lem1.3 |  |-  N = ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) | 
						
							| 4 |  | picn |  |-  _pi e. CC | 
						
							| 5 |  | 2re |  |-  2 e. RR | 
						
							| 6 |  | pire |  |-  _pi e. RR | 
						
							| 7 | 5 6 | remulcli |  |-  ( 2 x. _pi ) e. RR | 
						
							| 8 | 7 | recni |  |-  ( 2 x. _pi ) e. CC | 
						
							| 9 |  | 2pos |  |-  0 < 2 | 
						
							| 10 |  | pipos |  |-  0 < _pi | 
						
							| 11 | 5 6 9 10 | mulgt0ii |  |-  0 < ( 2 x. _pi ) | 
						
							| 12 | 7 11 | gt0ne0ii |  |-  ( 2 x. _pi ) =/= 0 | 
						
							| 13 | 8 12 | pm3.2i |  |-  ( ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) | 
						
							| 14 |  | ax-icn |  |-  _i e. CC | 
						
							| 15 |  | ine0 |  |-  _i =/= 0 | 
						
							| 16 | 14 15 | pm3.2i |  |-  ( _i e. CC /\ _i =/= 0 ) | 
						
							| 17 |  | divcan5 |  |-  ( ( _pi e. CC /\ ( ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) /\ ( _i e. CC /\ _i =/= 0 ) ) -> ( ( _i x. _pi ) / ( _i x. ( 2 x. _pi ) ) ) = ( _pi / ( 2 x. _pi ) ) ) | 
						
							| 18 | 4 13 16 17 | mp3an |  |-  ( ( _i x. _pi ) / ( _i x. ( 2 x. _pi ) ) ) = ( _pi / ( 2 x. _pi ) ) | 
						
							| 19 | 6 10 | gt0ne0ii |  |-  _pi =/= 0 | 
						
							| 20 |  | recdiv |  |-  ( ( ( ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) /\ ( _pi e. CC /\ _pi =/= 0 ) ) -> ( 1 / ( ( 2 x. _pi ) / _pi ) ) = ( _pi / ( 2 x. _pi ) ) ) | 
						
							| 21 | 8 12 4 19 20 | mp4an |  |-  ( 1 / ( ( 2 x. _pi ) / _pi ) ) = ( _pi / ( 2 x. _pi ) ) | 
						
							| 22 | 5 | recni |  |-  2 e. CC | 
						
							| 23 | 22 4 19 | divcan4i |  |-  ( ( 2 x. _pi ) / _pi ) = 2 | 
						
							| 24 | 23 | oveq2i |  |-  ( 1 / ( ( 2 x. _pi ) / _pi ) ) = ( 1 / 2 ) | 
						
							| 25 | 18 21 24 | 3eqtr2i |  |-  ( ( _i x. _pi ) / ( _i x. ( 2 x. _pi ) ) ) = ( 1 / 2 ) | 
						
							| 26 | 25 | oveq2i |  |-  ( ( T / ( _i x. ( 2 x. _pi ) ) ) - ( ( _i x. _pi ) / ( _i x. ( 2 x. _pi ) ) ) ) = ( ( T / ( _i x. ( 2 x. _pi ) ) ) - ( 1 / 2 ) ) | 
						
							| 27 |  | ax-1cn |  |-  1 e. CC | 
						
							| 28 |  | simp1 |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A e. CC ) | 
						
							| 29 |  | subcl |  |-  ( ( 1 e. CC /\ A e. CC ) -> ( 1 - A ) e. CC ) | 
						
							| 30 | 27 28 29 | sylancr |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 - A ) e. CC ) | 
						
							| 31 |  | simp3 |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A =/= 1 ) | 
						
							| 32 | 31 | necomd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> 1 =/= A ) | 
						
							| 33 |  | subeq0 |  |-  ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) | 
						
							| 34 | 27 28 33 | sylancr |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) | 
						
							| 35 | 34 | necon3bid |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 1 - A ) =/= 0 <-> 1 =/= A ) ) | 
						
							| 36 | 32 35 | mpbird |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 - A ) =/= 0 ) | 
						
							| 37 | 30 36 | reccld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 / ( 1 - A ) ) e. CC ) | 
						
							| 38 | 30 36 | recne0d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 / ( 1 - A ) ) =/= 0 ) | 
						
							| 39 | 37 38 | logcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` ( 1 / ( 1 - A ) ) ) e. CC ) | 
						
							| 40 |  | subcl |  |-  ( ( A e. CC /\ 1 e. CC ) -> ( A - 1 ) e. CC ) | 
						
							| 41 | 28 27 40 | sylancl |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A - 1 ) e. CC ) | 
						
							| 42 |  | simp2 |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A =/= 0 ) | 
						
							| 43 | 41 28 42 | divcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) / A ) e. CC ) | 
						
							| 44 |  | subeq0 |  |-  ( ( A e. CC /\ 1 e. CC ) -> ( ( A - 1 ) = 0 <-> A = 1 ) ) | 
						
							| 45 | 28 27 44 | sylancl |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) = 0 <-> A = 1 ) ) | 
						
							| 46 | 45 | necon3bid |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) =/= 0 <-> A =/= 1 ) ) | 
						
							| 47 | 31 46 | mpbird |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A - 1 ) =/= 0 ) | 
						
							| 48 | 41 28 47 42 | divne0d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) / A ) =/= 0 ) | 
						
							| 49 | 43 48 | logcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` ( ( A - 1 ) / A ) ) e. CC ) | 
						
							| 50 | 39 49 | addcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) e. CC ) | 
						
							| 51 | 28 42 | logcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` A ) e. CC ) | 
						
							| 52 | 50 51 | addcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) e. CC ) | 
						
							| 53 | 2 52 | eqeltrid |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> T e. CC ) | 
						
							| 54 | 14 4 | mulcli |  |-  ( _i x. _pi ) e. CC | 
						
							| 55 | 54 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( _i x. _pi ) e. CC ) | 
						
							| 56 | 14 8 | mulcli |  |-  ( _i x. ( 2 x. _pi ) ) e. CC | 
						
							| 57 | 56 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( _i x. ( 2 x. _pi ) ) e. CC ) | 
						
							| 58 | 14 8 15 12 | mulne0i |  |-  ( _i x. ( 2 x. _pi ) ) =/= 0 | 
						
							| 59 | 58 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( _i x. ( 2 x. _pi ) ) =/= 0 ) | 
						
							| 60 | 53 55 57 59 | divsubdird |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T - ( _i x. _pi ) ) / ( _i x. ( 2 x. _pi ) ) ) = ( ( T / ( _i x. ( 2 x. _pi ) ) ) - ( ( _i x. _pi ) / ( _i x. ( 2 x. _pi ) ) ) ) ) | 
						
							| 61 | 16 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( _i e. CC /\ _i =/= 0 ) ) | 
						
							| 62 | 13 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) ) | 
						
							| 63 |  | divdiv1 |  |-  ( ( T e. CC /\ ( _i e. CC /\ _i =/= 0 ) /\ ( ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) ) -> ( ( T / _i ) / ( 2 x. _pi ) ) = ( T / ( _i x. ( 2 x. _pi ) ) ) ) | 
						
							| 64 | 53 61 62 63 | syl3anc |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T / _i ) / ( 2 x. _pi ) ) = ( T / ( _i x. ( 2 x. _pi ) ) ) ) | 
						
							| 65 | 64 | oveq1d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) = ( ( T / ( _i x. ( 2 x. _pi ) ) ) - ( 1 / 2 ) ) ) | 
						
							| 66 | 3 65 | eqtrid |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> N = ( ( T / ( _i x. ( 2 x. _pi ) ) ) - ( 1 / 2 ) ) ) | 
						
							| 67 | 26 60 66 | 3eqtr4a |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T - ( _i x. _pi ) ) / ( _i x. ( 2 x. _pi ) ) ) = N ) | 
						
							| 68 |  | efsub |  |-  ( ( T e. CC /\ ( _i x. _pi ) e. CC ) -> ( exp ` ( T - ( _i x. _pi ) ) ) = ( ( exp ` T ) / ( exp ` ( _i x. _pi ) ) ) ) | 
						
							| 69 | 53 54 68 | sylancl |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` ( T - ( _i x. _pi ) ) ) = ( ( exp ` T ) / ( exp ` ( _i x. _pi ) ) ) ) | 
						
							| 70 |  | efipi |  |-  ( exp ` ( _i x. _pi ) ) = -u 1 | 
						
							| 71 | 70 | oveq2i |  |-  ( ( exp ` T ) / ( exp ` ( _i x. _pi ) ) ) = ( ( exp ` T ) / -u 1 ) | 
						
							| 72 | 2 | fveq2i |  |-  ( exp ` T ) = ( exp ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) | 
						
							| 73 |  | efadd |  |-  ( ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) e. CC /\ ( log ` A ) e. CC ) -> ( exp ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) = ( ( exp ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) x. ( exp ` ( log ` A ) ) ) ) | 
						
							| 74 | 50 51 73 | syl2anc |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) = ( ( exp ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) x. ( exp ` ( log ` A ) ) ) ) | 
						
							| 75 |  | efadd |  |-  ( ( ( log ` ( 1 / ( 1 - A ) ) ) e. CC /\ ( log ` ( ( A - 1 ) / A ) ) e. CC ) -> ( exp ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) = ( ( exp ` ( log ` ( 1 / ( 1 - A ) ) ) ) x. ( exp ` ( log ` ( ( A - 1 ) / A ) ) ) ) ) | 
						
							| 76 | 39 49 75 | syl2anc |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) = ( ( exp ` ( log ` ( 1 / ( 1 - A ) ) ) ) x. ( exp ` ( log ` ( ( A - 1 ) / A ) ) ) ) ) | 
						
							| 77 |  | eflog |  |-  ( ( ( 1 / ( 1 - A ) ) e. CC /\ ( 1 / ( 1 - A ) ) =/= 0 ) -> ( exp ` ( log ` ( 1 / ( 1 - A ) ) ) ) = ( 1 / ( 1 - A ) ) ) | 
						
							| 78 | 37 38 77 | syl2anc |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` ( log ` ( 1 / ( 1 - A ) ) ) ) = ( 1 / ( 1 - A ) ) ) | 
						
							| 79 |  | eflog |  |-  ( ( ( ( A - 1 ) / A ) e. CC /\ ( ( A - 1 ) / A ) =/= 0 ) -> ( exp ` ( log ` ( ( A - 1 ) / A ) ) ) = ( ( A - 1 ) / A ) ) | 
						
							| 80 | 43 48 79 | syl2anc |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` ( log ` ( ( A - 1 ) / A ) ) ) = ( ( A - 1 ) / A ) ) | 
						
							| 81 | 78 80 | oveq12d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( exp ` ( log ` ( 1 / ( 1 - A ) ) ) ) x. ( exp ` ( log ` ( ( A - 1 ) / A ) ) ) ) = ( ( 1 / ( 1 - A ) ) x. ( ( A - 1 ) / A ) ) ) | 
						
							| 82 | 37 43 | mulcomd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 1 / ( 1 - A ) ) x. ( ( A - 1 ) / A ) ) = ( ( ( A - 1 ) / A ) x. ( 1 / ( 1 - A ) ) ) ) | 
						
							| 83 | 27 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> 1 e. CC ) | 
						
							| 84 | 83 30 36 | div2negd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u 1 / -u ( 1 - A ) ) = ( 1 / ( 1 - A ) ) ) | 
						
							| 85 |  | negsubdi2 |  |-  ( ( 1 e. CC /\ A e. CC ) -> -u ( 1 - A ) = ( A - 1 ) ) | 
						
							| 86 | 27 28 85 | sylancr |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u ( 1 - A ) = ( A - 1 ) ) | 
						
							| 87 | 86 | oveq2d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u 1 / -u ( 1 - A ) ) = ( -u 1 / ( A - 1 ) ) ) | 
						
							| 88 | 84 87 | eqtr3d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 / ( 1 - A ) ) = ( -u 1 / ( A - 1 ) ) ) | 
						
							| 89 | 88 | oveq2d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( A - 1 ) / A ) x. ( 1 / ( 1 - A ) ) ) = ( ( ( A - 1 ) / A ) x. ( -u 1 / ( A - 1 ) ) ) ) | 
						
							| 90 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 91 | 90 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u 1 e. CC ) | 
						
							| 92 | 91 41 28 47 42 | dmdcand |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( A - 1 ) / A ) x. ( -u 1 / ( A - 1 ) ) ) = ( -u 1 / A ) ) | 
						
							| 93 | 82 89 92 | 3eqtrd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 1 / ( 1 - A ) ) x. ( ( A - 1 ) / A ) ) = ( -u 1 / A ) ) | 
						
							| 94 | 76 81 93 | 3eqtrd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) = ( -u 1 / A ) ) | 
						
							| 95 |  | eflog |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) | 
						
							| 96 | 28 42 95 | syl2anc |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` ( log ` A ) ) = A ) | 
						
							| 97 | 94 96 | oveq12d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( exp ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) x. ( exp ` ( log ` A ) ) ) = ( ( -u 1 / A ) x. A ) ) | 
						
							| 98 | 91 28 42 | divcan1d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( -u 1 / A ) x. A ) = -u 1 ) | 
						
							| 99 | 74 97 98 | 3eqtrd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) = -u 1 ) | 
						
							| 100 | 72 99 | eqtrid |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` T ) = -u 1 ) | 
						
							| 101 | 100 | oveq1d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( exp ` T ) / -u 1 ) = ( -u 1 / -u 1 ) ) | 
						
							| 102 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 103 | 90 102 | dividi |  |-  ( -u 1 / -u 1 ) = 1 | 
						
							| 104 | 101 103 | eqtrdi |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( exp ` T ) / -u 1 ) = 1 ) | 
						
							| 105 | 71 104 | eqtrid |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( exp ` T ) / ( exp ` ( _i x. _pi ) ) ) = 1 ) | 
						
							| 106 | 69 105 | eqtrd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` ( T - ( _i x. _pi ) ) ) = 1 ) | 
						
							| 107 |  | subcl |  |-  ( ( T e. CC /\ ( _i x. _pi ) e. CC ) -> ( T - ( _i x. _pi ) ) e. CC ) | 
						
							| 108 | 53 54 107 | sylancl |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T - ( _i x. _pi ) ) e. CC ) | 
						
							| 109 |  | efeq1 |  |-  ( ( T - ( _i x. _pi ) ) e. CC -> ( ( exp ` ( T - ( _i x. _pi ) ) ) = 1 <-> ( ( T - ( _i x. _pi ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) | 
						
							| 110 | 108 109 | syl |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( exp ` ( T - ( _i x. _pi ) ) ) = 1 <-> ( ( T - ( _i x. _pi ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) | 
						
							| 111 | 106 110 | mpbid |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T - ( _i x. _pi ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) | 
						
							| 112 | 67 111 | eqeltrrd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> N e. ZZ ) | 
						
							| 113 | 14 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> _i e. CC ) | 
						
							| 114 | 15 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> _i =/= 0 ) | 
						
							| 115 | 53 113 114 | divcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T / _i ) e. CC ) | 
						
							| 116 | 8 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. _pi ) e. CC ) | 
						
							| 117 | 12 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. _pi ) =/= 0 ) | 
						
							| 118 | 115 116 117 | divcan1d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( T / _i ) / ( 2 x. _pi ) ) x. ( 2 x. _pi ) ) = ( T / _i ) ) | 
						
							| 119 | 3 | oveq1i |  |-  ( N + ( 1 / 2 ) ) = ( ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) + ( 1 / 2 ) ) | 
						
							| 120 | 115 116 117 | divcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T / _i ) / ( 2 x. _pi ) ) e. CC ) | 
						
							| 121 |  | halfre |  |-  ( 1 / 2 ) e. RR | 
						
							| 122 | 121 | recni |  |-  ( 1 / 2 ) e. CC | 
						
							| 123 |  | npcan |  |-  ( ( ( ( T / _i ) / ( 2 x. _pi ) ) e. CC /\ ( 1 / 2 ) e. CC ) -> ( ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( T / _i ) / ( 2 x. _pi ) ) ) | 
						
							| 124 | 120 122 123 | sylancl |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( T / _i ) / ( 2 x. _pi ) ) ) | 
						
							| 125 | 119 124 | eqtrid |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( N + ( 1 / 2 ) ) = ( ( T / _i ) / ( 2 x. _pi ) ) ) | 
						
							| 126 | 112 | zred |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> N e. RR ) | 
						
							| 127 |  | readdcl |  |-  ( ( N e. RR /\ ( 1 / 2 ) e. RR ) -> ( N + ( 1 / 2 ) ) e. RR ) | 
						
							| 128 | 126 121 127 | sylancl |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( N + ( 1 / 2 ) ) e. RR ) | 
						
							| 129 | 125 128 | eqeltrrd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T / _i ) / ( 2 x. _pi ) ) e. RR ) | 
						
							| 130 |  | remulcl |  |-  ( ( ( ( T / _i ) / ( 2 x. _pi ) ) e. RR /\ ( 2 x. _pi ) e. RR ) -> ( ( ( T / _i ) / ( 2 x. _pi ) ) x. ( 2 x. _pi ) ) e. RR ) | 
						
							| 131 | 129 7 130 | sylancl |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( T / _i ) / ( 2 x. _pi ) ) x. ( 2 x. _pi ) ) e. RR ) | 
						
							| 132 | 118 131 | eqeltrrd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T / _i ) e. RR ) | 
						
							| 133 | 112 132 | jca |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( N e. ZZ /\ ( T / _i ) e. RR ) ) |