Step |
Hyp |
Ref |
Expression |
1 |
|
ang.1 |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
2 |
|
ang180lem1.2 |
|- T = ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) |
3 |
|
ang180lem1.3 |
|- N = ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) |
4 |
|
picn |
|- _pi e. CC |
5 |
|
2re |
|- 2 e. RR |
6 |
|
pire |
|- _pi e. RR |
7 |
5 6
|
remulcli |
|- ( 2 x. _pi ) e. RR |
8 |
7
|
recni |
|- ( 2 x. _pi ) e. CC |
9 |
|
2pos |
|- 0 < 2 |
10 |
|
pipos |
|- 0 < _pi |
11 |
5 6 9 10
|
mulgt0ii |
|- 0 < ( 2 x. _pi ) |
12 |
7 11
|
gt0ne0ii |
|- ( 2 x. _pi ) =/= 0 |
13 |
8 12
|
pm3.2i |
|- ( ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) |
14 |
|
ax-icn |
|- _i e. CC |
15 |
|
ine0 |
|- _i =/= 0 |
16 |
14 15
|
pm3.2i |
|- ( _i e. CC /\ _i =/= 0 ) |
17 |
|
divcan5 |
|- ( ( _pi e. CC /\ ( ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) /\ ( _i e. CC /\ _i =/= 0 ) ) -> ( ( _i x. _pi ) / ( _i x. ( 2 x. _pi ) ) ) = ( _pi / ( 2 x. _pi ) ) ) |
18 |
4 13 16 17
|
mp3an |
|- ( ( _i x. _pi ) / ( _i x. ( 2 x. _pi ) ) ) = ( _pi / ( 2 x. _pi ) ) |
19 |
6 10
|
gt0ne0ii |
|- _pi =/= 0 |
20 |
|
recdiv |
|- ( ( ( ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) /\ ( _pi e. CC /\ _pi =/= 0 ) ) -> ( 1 / ( ( 2 x. _pi ) / _pi ) ) = ( _pi / ( 2 x. _pi ) ) ) |
21 |
8 12 4 19 20
|
mp4an |
|- ( 1 / ( ( 2 x. _pi ) / _pi ) ) = ( _pi / ( 2 x. _pi ) ) |
22 |
5
|
recni |
|- 2 e. CC |
23 |
22 4 19
|
divcan4i |
|- ( ( 2 x. _pi ) / _pi ) = 2 |
24 |
23
|
oveq2i |
|- ( 1 / ( ( 2 x. _pi ) / _pi ) ) = ( 1 / 2 ) |
25 |
18 21 24
|
3eqtr2i |
|- ( ( _i x. _pi ) / ( _i x. ( 2 x. _pi ) ) ) = ( 1 / 2 ) |
26 |
25
|
oveq2i |
|- ( ( T / ( _i x. ( 2 x. _pi ) ) ) - ( ( _i x. _pi ) / ( _i x. ( 2 x. _pi ) ) ) ) = ( ( T / ( _i x. ( 2 x. _pi ) ) ) - ( 1 / 2 ) ) |
27 |
|
ax-1cn |
|- 1 e. CC |
28 |
|
simp1 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A e. CC ) |
29 |
|
subcl |
|- ( ( 1 e. CC /\ A e. CC ) -> ( 1 - A ) e. CC ) |
30 |
27 28 29
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 - A ) e. CC ) |
31 |
|
simp3 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A =/= 1 ) |
32 |
31
|
necomd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> 1 =/= A ) |
33 |
|
subeq0 |
|- ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
34 |
27 28 33
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
35 |
34
|
necon3bid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 1 - A ) =/= 0 <-> 1 =/= A ) ) |
36 |
32 35
|
mpbird |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 - A ) =/= 0 ) |
37 |
30 36
|
reccld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 / ( 1 - A ) ) e. CC ) |
38 |
30 36
|
recne0d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 / ( 1 - A ) ) =/= 0 ) |
39 |
37 38
|
logcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` ( 1 / ( 1 - A ) ) ) e. CC ) |
40 |
|
subcl |
|- ( ( A e. CC /\ 1 e. CC ) -> ( A - 1 ) e. CC ) |
41 |
28 27 40
|
sylancl |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A - 1 ) e. CC ) |
42 |
|
simp2 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A =/= 0 ) |
43 |
41 28 42
|
divcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) / A ) e. CC ) |
44 |
|
subeq0 |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A - 1 ) = 0 <-> A = 1 ) ) |
45 |
28 27 44
|
sylancl |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) = 0 <-> A = 1 ) ) |
46 |
45
|
necon3bid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) =/= 0 <-> A =/= 1 ) ) |
47 |
31 46
|
mpbird |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A - 1 ) =/= 0 ) |
48 |
41 28 47 42
|
divne0d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) / A ) =/= 0 ) |
49 |
43 48
|
logcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` ( ( A - 1 ) / A ) ) e. CC ) |
50 |
39 49
|
addcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) e. CC ) |
51 |
28 42
|
logcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` A ) e. CC ) |
52 |
50 51
|
addcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) e. CC ) |
53 |
2 52
|
eqeltrid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> T e. CC ) |
54 |
14 4
|
mulcli |
|- ( _i x. _pi ) e. CC |
55 |
54
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( _i x. _pi ) e. CC ) |
56 |
14 8
|
mulcli |
|- ( _i x. ( 2 x. _pi ) ) e. CC |
57 |
56
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( _i x. ( 2 x. _pi ) ) e. CC ) |
58 |
14 8 15 12
|
mulne0i |
|- ( _i x. ( 2 x. _pi ) ) =/= 0 |
59 |
58
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( _i x. ( 2 x. _pi ) ) =/= 0 ) |
60 |
53 55 57 59
|
divsubdird |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T - ( _i x. _pi ) ) / ( _i x. ( 2 x. _pi ) ) ) = ( ( T / ( _i x. ( 2 x. _pi ) ) ) - ( ( _i x. _pi ) / ( _i x. ( 2 x. _pi ) ) ) ) ) |
61 |
16
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( _i e. CC /\ _i =/= 0 ) ) |
62 |
13
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) ) |
63 |
|
divdiv1 |
|- ( ( T e. CC /\ ( _i e. CC /\ _i =/= 0 ) /\ ( ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) ) -> ( ( T / _i ) / ( 2 x. _pi ) ) = ( T / ( _i x. ( 2 x. _pi ) ) ) ) |
64 |
53 61 62 63
|
syl3anc |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T / _i ) / ( 2 x. _pi ) ) = ( T / ( _i x. ( 2 x. _pi ) ) ) ) |
65 |
64
|
oveq1d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) = ( ( T / ( _i x. ( 2 x. _pi ) ) ) - ( 1 / 2 ) ) ) |
66 |
3 65
|
eqtrid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> N = ( ( T / ( _i x. ( 2 x. _pi ) ) ) - ( 1 / 2 ) ) ) |
67 |
26 60 66
|
3eqtr4a |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T - ( _i x. _pi ) ) / ( _i x. ( 2 x. _pi ) ) ) = N ) |
68 |
|
efsub |
|- ( ( T e. CC /\ ( _i x. _pi ) e. CC ) -> ( exp ` ( T - ( _i x. _pi ) ) ) = ( ( exp ` T ) / ( exp ` ( _i x. _pi ) ) ) ) |
69 |
53 54 68
|
sylancl |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` ( T - ( _i x. _pi ) ) ) = ( ( exp ` T ) / ( exp ` ( _i x. _pi ) ) ) ) |
70 |
|
efipi |
|- ( exp ` ( _i x. _pi ) ) = -u 1 |
71 |
70
|
oveq2i |
|- ( ( exp ` T ) / ( exp ` ( _i x. _pi ) ) ) = ( ( exp ` T ) / -u 1 ) |
72 |
2
|
fveq2i |
|- ( exp ` T ) = ( exp ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) |
73 |
|
efadd |
|- ( ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) e. CC /\ ( log ` A ) e. CC ) -> ( exp ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) = ( ( exp ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) x. ( exp ` ( log ` A ) ) ) ) |
74 |
50 51 73
|
syl2anc |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) = ( ( exp ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) x. ( exp ` ( log ` A ) ) ) ) |
75 |
|
efadd |
|- ( ( ( log ` ( 1 / ( 1 - A ) ) ) e. CC /\ ( log ` ( ( A - 1 ) / A ) ) e. CC ) -> ( exp ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) = ( ( exp ` ( log ` ( 1 / ( 1 - A ) ) ) ) x. ( exp ` ( log ` ( ( A - 1 ) / A ) ) ) ) ) |
76 |
39 49 75
|
syl2anc |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) = ( ( exp ` ( log ` ( 1 / ( 1 - A ) ) ) ) x. ( exp ` ( log ` ( ( A - 1 ) / A ) ) ) ) ) |
77 |
|
eflog |
|- ( ( ( 1 / ( 1 - A ) ) e. CC /\ ( 1 / ( 1 - A ) ) =/= 0 ) -> ( exp ` ( log ` ( 1 / ( 1 - A ) ) ) ) = ( 1 / ( 1 - A ) ) ) |
78 |
37 38 77
|
syl2anc |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` ( log ` ( 1 / ( 1 - A ) ) ) ) = ( 1 / ( 1 - A ) ) ) |
79 |
|
eflog |
|- ( ( ( ( A - 1 ) / A ) e. CC /\ ( ( A - 1 ) / A ) =/= 0 ) -> ( exp ` ( log ` ( ( A - 1 ) / A ) ) ) = ( ( A - 1 ) / A ) ) |
80 |
43 48 79
|
syl2anc |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` ( log ` ( ( A - 1 ) / A ) ) ) = ( ( A - 1 ) / A ) ) |
81 |
78 80
|
oveq12d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( exp ` ( log ` ( 1 / ( 1 - A ) ) ) ) x. ( exp ` ( log ` ( ( A - 1 ) / A ) ) ) ) = ( ( 1 / ( 1 - A ) ) x. ( ( A - 1 ) / A ) ) ) |
82 |
37 43
|
mulcomd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 1 / ( 1 - A ) ) x. ( ( A - 1 ) / A ) ) = ( ( ( A - 1 ) / A ) x. ( 1 / ( 1 - A ) ) ) ) |
83 |
27
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> 1 e. CC ) |
84 |
83 30 36
|
div2negd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u 1 / -u ( 1 - A ) ) = ( 1 / ( 1 - A ) ) ) |
85 |
|
negsubdi2 |
|- ( ( 1 e. CC /\ A e. CC ) -> -u ( 1 - A ) = ( A - 1 ) ) |
86 |
27 28 85
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u ( 1 - A ) = ( A - 1 ) ) |
87 |
86
|
oveq2d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u 1 / -u ( 1 - A ) ) = ( -u 1 / ( A - 1 ) ) ) |
88 |
84 87
|
eqtr3d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 / ( 1 - A ) ) = ( -u 1 / ( A - 1 ) ) ) |
89 |
88
|
oveq2d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( A - 1 ) / A ) x. ( 1 / ( 1 - A ) ) ) = ( ( ( A - 1 ) / A ) x. ( -u 1 / ( A - 1 ) ) ) ) |
90 |
|
neg1cn |
|- -u 1 e. CC |
91 |
90
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u 1 e. CC ) |
92 |
91 41 28 47 42
|
dmdcand |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( A - 1 ) / A ) x. ( -u 1 / ( A - 1 ) ) ) = ( -u 1 / A ) ) |
93 |
82 89 92
|
3eqtrd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 1 / ( 1 - A ) ) x. ( ( A - 1 ) / A ) ) = ( -u 1 / A ) ) |
94 |
76 81 93
|
3eqtrd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) = ( -u 1 / A ) ) |
95 |
|
eflog |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |
96 |
28 42 95
|
syl2anc |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` ( log ` A ) ) = A ) |
97 |
94 96
|
oveq12d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( exp ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) x. ( exp ` ( log ` A ) ) ) = ( ( -u 1 / A ) x. A ) ) |
98 |
91 28 42
|
divcan1d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( -u 1 / A ) x. A ) = -u 1 ) |
99 |
74 97 98
|
3eqtrd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) = -u 1 ) |
100 |
72 99
|
eqtrid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` T ) = -u 1 ) |
101 |
100
|
oveq1d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( exp ` T ) / -u 1 ) = ( -u 1 / -u 1 ) ) |
102 |
|
neg1ne0 |
|- -u 1 =/= 0 |
103 |
90 102
|
dividi |
|- ( -u 1 / -u 1 ) = 1 |
104 |
101 103
|
eqtrdi |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( exp ` T ) / -u 1 ) = 1 ) |
105 |
71 104
|
eqtrid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( exp ` T ) / ( exp ` ( _i x. _pi ) ) ) = 1 ) |
106 |
69 105
|
eqtrd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( exp ` ( T - ( _i x. _pi ) ) ) = 1 ) |
107 |
|
subcl |
|- ( ( T e. CC /\ ( _i x. _pi ) e. CC ) -> ( T - ( _i x. _pi ) ) e. CC ) |
108 |
53 54 107
|
sylancl |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T - ( _i x. _pi ) ) e. CC ) |
109 |
|
efeq1 |
|- ( ( T - ( _i x. _pi ) ) e. CC -> ( ( exp ` ( T - ( _i x. _pi ) ) ) = 1 <-> ( ( T - ( _i x. _pi ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |
110 |
108 109
|
syl |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( exp ` ( T - ( _i x. _pi ) ) ) = 1 <-> ( ( T - ( _i x. _pi ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |
111 |
106 110
|
mpbid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T - ( _i x. _pi ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) |
112 |
67 111
|
eqeltrrd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> N e. ZZ ) |
113 |
14
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> _i e. CC ) |
114 |
15
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> _i =/= 0 ) |
115 |
53 113 114
|
divcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T / _i ) e. CC ) |
116 |
8
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. _pi ) e. CC ) |
117 |
12
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. _pi ) =/= 0 ) |
118 |
115 116 117
|
divcan1d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( T / _i ) / ( 2 x. _pi ) ) x. ( 2 x. _pi ) ) = ( T / _i ) ) |
119 |
3
|
oveq1i |
|- ( N + ( 1 / 2 ) ) = ( ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) + ( 1 / 2 ) ) |
120 |
115 116 117
|
divcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T / _i ) / ( 2 x. _pi ) ) e. CC ) |
121 |
|
halfre |
|- ( 1 / 2 ) e. RR |
122 |
121
|
recni |
|- ( 1 / 2 ) e. CC |
123 |
|
npcan |
|- ( ( ( ( T / _i ) / ( 2 x. _pi ) ) e. CC /\ ( 1 / 2 ) e. CC ) -> ( ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( T / _i ) / ( 2 x. _pi ) ) ) |
124 |
120 122 123
|
sylancl |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( T / _i ) / ( 2 x. _pi ) ) ) |
125 |
119 124
|
eqtrid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( N + ( 1 / 2 ) ) = ( ( T / _i ) / ( 2 x. _pi ) ) ) |
126 |
112
|
zred |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> N e. RR ) |
127 |
|
readdcl |
|- ( ( N e. RR /\ ( 1 / 2 ) e. RR ) -> ( N + ( 1 / 2 ) ) e. RR ) |
128 |
126 121 127
|
sylancl |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( N + ( 1 / 2 ) ) e. RR ) |
129 |
125 128
|
eqeltrrd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T / _i ) / ( 2 x. _pi ) ) e. RR ) |
130 |
|
remulcl |
|- ( ( ( ( T / _i ) / ( 2 x. _pi ) ) e. RR /\ ( 2 x. _pi ) e. RR ) -> ( ( ( T / _i ) / ( 2 x. _pi ) ) x. ( 2 x. _pi ) ) e. RR ) |
131 |
129 7 130
|
sylancl |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( T / _i ) / ( 2 x. _pi ) ) x. ( 2 x. _pi ) ) e. RR ) |
132 |
118 131
|
eqeltrrd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T / _i ) e. RR ) |
133 |
112 132
|
jca |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( N e. ZZ /\ ( T / _i ) e. RR ) ) |