| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ang.1 |  |-  F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) | 
						
							| 2 |  | ang180lem1.2 |  |-  T = ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) | 
						
							| 3 |  | ang180lem1.3 |  |-  N = ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) | 
						
							| 4 |  | 2cn |  |-  2 e. CC | 
						
							| 5 |  | 1re |  |-  1 e. RR | 
						
							| 6 | 5 | rehalfcli |  |-  ( 1 / 2 ) e. RR | 
						
							| 7 | 6 | recni |  |-  ( 1 / 2 ) e. CC | 
						
							| 8 | 4 7 | negsubdii |  |-  -u ( 2 - ( 1 / 2 ) ) = ( -u 2 + ( 1 / 2 ) ) | 
						
							| 9 |  | 4d2e2 |  |-  ( 4 / 2 ) = 2 | 
						
							| 10 | 9 | oveq1i |  |-  ( ( 4 / 2 ) - ( 1 / 2 ) ) = ( 2 - ( 1 / 2 ) ) | 
						
							| 11 |  | 4cn |  |-  4 e. CC | 
						
							| 12 |  | ax-1cn |  |-  1 e. CC | 
						
							| 13 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 14 |  | divsubdir |  |-  ( ( 4 e. CC /\ 1 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 4 - 1 ) / 2 ) = ( ( 4 / 2 ) - ( 1 / 2 ) ) ) | 
						
							| 15 | 11 12 13 14 | mp3an |  |-  ( ( 4 - 1 ) / 2 ) = ( ( 4 / 2 ) - ( 1 / 2 ) ) | 
						
							| 16 |  | 4m1e3 |  |-  ( 4 - 1 ) = 3 | 
						
							| 17 | 16 | oveq1i |  |-  ( ( 4 - 1 ) / 2 ) = ( 3 / 2 ) | 
						
							| 18 | 15 17 | eqtr3i |  |-  ( ( 4 / 2 ) - ( 1 / 2 ) ) = ( 3 / 2 ) | 
						
							| 19 | 10 18 | eqtr3i |  |-  ( 2 - ( 1 / 2 ) ) = ( 3 / 2 ) | 
						
							| 20 | 19 | negeqi |  |-  -u ( 2 - ( 1 / 2 ) ) = -u ( 3 / 2 ) | 
						
							| 21 | 8 20 | eqtr3i |  |-  ( -u 2 + ( 1 / 2 ) ) = -u ( 3 / 2 ) | 
						
							| 22 |  | 3re |  |-  3 e. RR | 
						
							| 23 | 22 | rehalfcli |  |-  ( 3 / 2 ) e. RR | 
						
							| 24 | 23 | recni |  |-  ( 3 / 2 ) e. CC | 
						
							| 25 |  | picn |  |-  _pi e. CC | 
						
							| 26 | 24 4 25 | mulassi |  |-  ( ( ( 3 / 2 ) x. 2 ) x. _pi ) = ( ( 3 / 2 ) x. ( 2 x. _pi ) ) | 
						
							| 27 |  | 3cn |  |-  3 e. CC | 
						
							| 28 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 29 | 27 4 28 | divcan1i |  |-  ( ( 3 / 2 ) x. 2 ) = 3 | 
						
							| 30 | 29 | oveq1i |  |-  ( ( ( 3 / 2 ) x. 2 ) x. _pi ) = ( 3 x. _pi ) | 
						
							| 31 | 26 30 | eqtr3i |  |-  ( ( 3 / 2 ) x. ( 2 x. _pi ) ) = ( 3 x. _pi ) | 
						
							| 32 | 31 | negeqi |  |-  -u ( ( 3 / 2 ) x. ( 2 x. _pi ) ) = -u ( 3 x. _pi ) | 
						
							| 33 |  | 2re |  |-  2 e. RR | 
						
							| 34 |  | pire |  |-  _pi e. RR | 
						
							| 35 | 33 34 | remulcli |  |-  ( 2 x. _pi ) e. RR | 
						
							| 36 | 35 | recni |  |-  ( 2 x. _pi ) e. CC | 
						
							| 37 | 24 36 | mulneg1i |  |-  ( -u ( 3 / 2 ) x. ( 2 x. _pi ) ) = -u ( ( 3 / 2 ) x. ( 2 x. _pi ) ) | 
						
							| 38 | 27 25 | mulneg2i |  |-  ( 3 x. -u _pi ) = -u ( 3 x. _pi ) | 
						
							| 39 | 32 37 38 | 3eqtr4i |  |-  ( -u ( 3 / 2 ) x. ( 2 x. _pi ) ) = ( 3 x. -u _pi ) | 
						
							| 40 | 34 | renegcli |  |-  -u _pi e. RR | 
						
							| 41 | 33 40 | remulcli |  |-  ( 2 x. -u _pi ) e. RR | 
						
							| 42 | 41 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. -u _pi ) e. RR ) | 
						
							| 43 | 40 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u _pi e. RR ) | 
						
							| 44 |  | simp1 |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A e. CC ) | 
						
							| 45 |  | subcl |  |-  ( ( 1 e. CC /\ A e. CC ) -> ( 1 - A ) e. CC ) | 
						
							| 46 | 12 44 45 | sylancr |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 - A ) e. CC ) | 
						
							| 47 |  | simp3 |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A =/= 1 ) | 
						
							| 48 | 47 | necomd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> 1 =/= A ) | 
						
							| 49 |  | subeq0 |  |-  ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) | 
						
							| 50 | 12 44 49 | sylancr |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) | 
						
							| 51 | 50 | necon3bid |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 1 - A ) =/= 0 <-> 1 =/= A ) ) | 
						
							| 52 | 48 51 | mpbird |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 - A ) =/= 0 ) | 
						
							| 53 | 46 52 | reccld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 / ( 1 - A ) ) e. CC ) | 
						
							| 54 | 46 52 | recne0d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 / ( 1 - A ) ) =/= 0 ) | 
						
							| 55 | 53 54 | logcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` ( 1 / ( 1 - A ) ) ) e. CC ) | 
						
							| 56 |  | subcl |  |-  ( ( A e. CC /\ 1 e. CC ) -> ( A - 1 ) e. CC ) | 
						
							| 57 | 44 12 56 | sylancl |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A - 1 ) e. CC ) | 
						
							| 58 |  | simp2 |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A =/= 0 ) | 
						
							| 59 | 57 44 58 | divcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) / A ) e. CC ) | 
						
							| 60 |  | subeq0 |  |-  ( ( A e. CC /\ 1 e. CC ) -> ( ( A - 1 ) = 0 <-> A = 1 ) ) | 
						
							| 61 | 44 12 60 | sylancl |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) = 0 <-> A = 1 ) ) | 
						
							| 62 | 61 | necon3bid |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) =/= 0 <-> A =/= 1 ) ) | 
						
							| 63 | 47 62 | mpbird |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A - 1 ) =/= 0 ) | 
						
							| 64 | 57 44 63 58 | divne0d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) / A ) =/= 0 ) | 
						
							| 65 | 59 64 | logcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` ( ( A - 1 ) / A ) ) e. CC ) | 
						
							| 66 | 55 65 | addcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) e. CC ) | 
						
							| 67 | 66 | imcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) e. RR ) | 
						
							| 68 |  | logcl |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) | 
						
							| 69 | 68 | 3adant3 |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` A ) e. CC ) | 
						
							| 70 | 69 | imcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( log ` A ) ) e. RR ) | 
						
							| 71 | 55 | imcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( log ` ( 1 / ( 1 - A ) ) ) ) e. RR ) | 
						
							| 72 | 65 | imcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( log ` ( ( A - 1 ) / A ) ) ) e. RR ) | 
						
							| 73 | 53 54 | logimcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u _pi < ( Im ` ( log ` ( 1 / ( 1 - A ) ) ) ) /\ ( Im ` ( log ` ( 1 / ( 1 - A ) ) ) ) <_ _pi ) ) | 
						
							| 74 | 73 | simpld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u _pi < ( Im ` ( log ` ( 1 / ( 1 - A ) ) ) ) ) | 
						
							| 75 | 59 64 | logimcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u _pi < ( Im ` ( log ` ( ( A - 1 ) / A ) ) ) /\ ( Im ` ( log ` ( ( A - 1 ) / A ) ) ) <_ _pi ) ) | 
						
							| 76 | 75 | simpld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u _pi < ( Im ` ( log ` ( ( A - 1 ) / A ) ) ) ) | 
						
							| 77 | 43 43 71 72 74 76 | lt2addd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u _pi + -u _pi ) < ( ( Im ` ( log ` ( 1 / ( 1 - A ) ) ) ) + ( Im ` ( log ` ( ( A - 1 ) / A ) ) ) ) ) | 
						
							| 78 |  | negpicn |  |-  -u _pi e. CC | 
						
							| 79 | 78 | 2timesi |  |-  ( 2 x. -u _pi ) = ( -u _pi + -u _pi ) | 
						
							| 80 | 79 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. -u _pi ) = ( -u _pi + -u _pi ) ) | 
						
							| 81 | 55 65 | imaddd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) = ( ( Im ` ( log ` ( 1 / ( 1 - A ) ) ) ) + ( Im ` ( log ` ( ( A - 1 ) / A ) ) ) ) ) | 
						
							| 82 | 77 80 81 | 3brtr4d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. -u _pi ) < ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) | 
						
							| 83 |  | logimcl |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( -u _pi < ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) ) | 
						
							| 84 | 83 | 3adant3 |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u _pi < ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) ) | 
						
							| 85 | 84 | simpld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u _pi < ( Im ` ( log ` A ) ) ) | 
						
							| 86 | 42 43 67 70 82 85 | lt2addd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 2 x. -u _pi ) + -u _pi ) < ( ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) + ( Im ` ( log ` A ) ) ) ) | 
						
							| 87 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 88 | 87 | oveq1i |  |-  ( 3 x. -u _pi ) = ( ( 2 + 1 ) x. -u _pi ) | 
						
							| 89 | 4 12 78 | adddiri |  |-  ( ( 2 + 1 ) x. -u _pi ) = ( ( 2 x. -u _pi ) + ( 1 x. -u _pi ) ) | 
						
							| 90 | 78 | mullidi |  |-  ( 1 x. -u _pi ) = -u _pi | 
						
							| 91 | 90 | oveq2i |  |-  ( ( 2 x. -u _pi ) + ( 1 x. -u _pi ) ) = ( ( 2 x. -u _pi ) + -u _pi ) | 
						
							| 92 | 88 89 91 | 3eqtri |  |-  ( 3 x. -u _pi ) = ( ( 2 x. -u _pi ) + -u _pi ) | 
						
							| 93 | 92 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 3 x. -u _pi ) = ( ( 2 x. -u _pi ) + -u _pi ) ) | 
						
							| 94 | 2 | fveq2i |  |-  ( Im ` T ) = ( Im ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) | 
						
							| 95 | 66 69 | imaddd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) = ( ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) + ( Im ` ( log ` A ) ) ) ) | 
						
							| 96 | 94 95 | eqtrid |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` T ) = ( ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) + ( Im ` ( log ` A ) ) ) ) | 
						
							| 97 | 86 93 96 | 3brtr4d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 3 x. -u _pi ) < ( Im ` T ) ) | 
						
							| 98 | 66 69 | addcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) e. CC ) | 
						
							| 99 | 2 98 | eqeltrid |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> T e. CC ) | 
						
							| 100 |  | imval |  |-  ( T e. CC -> ( Im ` T ) = ( Re ` ( T / _i ) ) ) | 
						
							| 101 | 99 100 | syl |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` T ) = ( Re ` ( T / _i ) ) ) | 
						
							| 102 | 1 2 3 | ang180lem1 |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( N e. ZZ /\ ( T / _i ) e. RR ) ) | 
						
							| 103 | 102 | simprd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T / _i ) e. RR ) | 
						
							| 104 | 103 | rered |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Re ` ( T / _i ) ) = ( T / _i ) ) | 
						
							| 105 | 101 104 | eqtrd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` T ) = ( T / _i ) ) | 
						
							| 106 | 97 105 | breqtrd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 3 x. -u _pi ) < ( T / _i ) ) | 
						
							| 107 | 39 106 | eqbrtrid |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u ( 3 / 2 ) x. ( 2 x. _pi ) ) < ( T / _i ) ) | 
						
							| 108 | 23 | renegcli |  |-  -u ( 3 / 2 ) e. RR | 
						
							| 109 | 108 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u ( 3 / 2 ) e. RR ) | 
						
							| 110 | 35 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. _pi ) e. RR ) | 
						
							| 111 |  | 2pos |  |-  0 < 2 | 
						
							| 112 |  | pipos |  |-  0 < _pi | 
						
							| 113 | 33 34 111 112 | mulgt0ii |  |-  0 < ( 2 x. _pi ) | 
						
							| 114 | 113 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> 0 < ( 2 x. _pi ) ) | 
						
							| 115 |  | ltmuldiv |  |-  ( ( -u ( 3 / 2 ) e. RR /\ ( T / _i ) e. RR /\ ( ( 2 x. _pi ) e. RR /\ 0 < ( 2 x. _pi ) ) ) -> ( ( -u ( 3 / 2 ) x. ( 2 x. _pi ) ) < ( T / _i ) <-> -u ( 3 / 2 ) < ( ( T / _i ) / ( 2 x. _pi ) ) ) ) | 
						
							| 116 | 109 103 110 114 115 | syl112anc |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( -u ( 3 / 2 ) x. ( 2 x. _pi ) ) < ( T / _i ) <-> -u ( 3 / 2 ) < ( ( T / _i ) / ( 2 x. _pi ) ) ) ) | 
						
							| 117 | 107 116 | mpbid |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u ( 3 / 2 ) < ( ( T / _i ) / ( 2 x. _pi ) ) ) | 
						
							| 118 | 21 117 | eqbrtrid |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u 2 + ( 1 / 2 ) ) < ( ( T / _i ) / ( 2 x. _pi ) ) ) | 
						
							| 119 | 33 | renegcli |  |-  -u 2 e. RR | 
						
							| 120 | 119 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u 2 e. RR ) | 
						
							| 121 | 6 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 / 2 ) e. RR ) | 
						
							| 122 | 35 113 | gt0ne0ii |  |-  ( 2 x. _pi ) =/= 0 | 
						
							| 123 | 122 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. _pi ) =/= 0 ) | 
						
							| 124 | 103 110 123 | redivcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T / _i ) / ( 2 x. _pi ) ) e. RR ) | 
						
							| 125 | 120 121 124 | ltaddsubd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( -u 2 + ( 1 / 2 ) ) < ( ( T / _i ) / ( 2 x. _pi ) ) <-> -u 2 < ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) ) ) | 
						
							| 126 | 118 125 | mpbid |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u 2 < ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) ) | 
						
							| 127 | 126 3 | breqtrrdi |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u 2 < N ) | 
						
							| 128 | 34 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> _pi e. RR ) | 
						
							| 129 | 73 | simprd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( log ` ( 1 / ( 1 - A ) ) ) ) <_ _pi ) | 
						
							| 130 | 75 | simprd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( log ` ( ( A - 1 ) / A ) ) ) <_ _pi ) | 
						
							| 131 | 71 72 128 128 129 130 | le2addd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( Im ` ( log ` ( 1 / ( 1 - A ) ) ) ) + ( Im ` ( log ` ( ( A - 1 ) / A ) ) ) ) <_ ( _pi + _pi ) ) | 
						
							| 132 | 25 | 2timesi |  |-  ( 2 x. _pi ) = ( _pi + _pi ) | 
						
							| 133 | 132 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. _pi ) = ( _pi + _pi ) ) | 
						
							| 134 | 131 81 133 | 3brtr4d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) <_ ( 2 x. _pi ) ) | 
						
							| 135 | 84 | simprd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( log ` A ) ) <_ _pi ) | 
						
							| 136 | 67 70 110 128 134 135 | le2addd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) + ( Im ` ( log ` A ) ) ) <_ ( ( 2 x. _pi ) + _pi ) ) | 
						
							| 137 | 105 96 | eqtr3d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T / _i ) = ( ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) + ( Im ` ( log ` A ) ) ) ) | 
						
							| 138 | 87 | oveq1i |  |-  ( 3 x. _pi ) = ( ( 2 + 1 ) x. _pi ) | 
						
							| 139 | 4 12 25 | adddiri |  |-  ( ( 2 + 1 ) x. _pi ) = ( ( 2 x. _pi ) + ( 1 x. _pi ) ) | 
						
							| 140 | 25 | mullidi |  |-  ( 1 x. _pi ) = _pi | 
						
							| 141 | 140 | oveq2i |  |-  ( ( 2 x. _pi ) + ( 1 x. _pi ) ) = ( ( 2 x. _pi ) + _pi ) | 
						
							| 142 | 138 139 141 | 3eqtri |  |-  ( 3 x. _pi ) = ( ( 2 x. _pi ) + _pi ) | 
						
							| 143 | 142 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 3 x. _pi ) = ( ( 2 x. _pi ) + _pi ) ) | 
						
							| 144 | 136 137 143 | 3brtr4d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T / _i ) <_ ( 3 x. _pi ) ) | 
						
							| 145 | 36 | subid1i |  |-  ( ( 2 x. _pi ) - 0 ) = ( 2 x. _pi ) | 
						
							| 146 | 145 122 | eqnetri |  |-  ( ( 2 x. _pi ) - 0 ) =/= 0 | 
						
							| 147 |  | negsub |  |-  ( ( 1 e. CC /\ A e. CC ) -> ( 1 + -u A ) = ( 1 - A ) ) | 
						
							| 148 | 12 44 147 | sylancr |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 + -u A ) = ( 1 - A ) ) | 
						
							| 149 | 148 | adantr |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( 1 + -u A ) = ( 1 - A ) ) | 
						
							| 150 |  | 1rp |  |-  1 e. RR+ | 
						
							| 151 | 143 137 | oveq12d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 3 x. _pi ) - ( T / _i ) ) = ( ( ( 2 x. _pi ) + _pi ) - ( ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) + ( Im ` ( log ` A ) ) ) ) ) | 
						
							| 152 | 36 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. _pi ) e. CC ) | 
						
							| 153 | 25 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> _pi e. CC ) | 
						
							| 154 | 67 | recnd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) e. CC ) | 
						
							| 155 | 70 | recnd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( log ` A ) ) e. CC ) | 
						
							| 156 | 152 153 154 155 | addsub4d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( 2 x. _pi ) + _pi ) - ( ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) + ( Im ` ( log ` A ) ) ) ) = ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) + ( _pi - ( Im ` ( log ` A ) ) ) ) ) | 
						
							| 157 | 151 156 | eqtrd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 3 x. _pi ) - ( T / _i ) ) = ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) + ( _pi - ( Im ` ( log ` A ) ) ) ) ) | 
						
							| 158 | 157 | adantr |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( 3 x. _pi ) - ( T / _i ) ) = ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) + ( _pi - ( Im ` ( log ` A ) ) ) ) ) | 
						
							| 159 | 22 34 | remulcli |  |-  ( 3 x. _pi ) e. RR | 
						
							| 160 | 159 | recni |  |-  ( 3 x. _pi ) e. CC | 
						
							| 161 |  | ax-icn |  |-  _i e. CC | 
						
							| 162 | 161 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> _i e. CC ) | 
						
							| 163 |  | ine0 |  |-  _i =/= 0 | 
						
							| 164 | 163 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> _i =/= 0 ) | 
						
							| 165 | 99 162 164 | divcld |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T / _i ) e. CC ) | 
						
							| 166 |  | subeq0 |  |-  ( ( ( 3 x. _pi ) e. CC /\ ( T / _i ) e. CC ) -> ( ( ( 3 x. _pi ) - ( T / _i ) ) = 0 <-> ( 3 x. _pi ) = ( T / _i ) ) ) | 
						
							| 167 | 160 165 166 | sylancr |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( 3 x. _pi ) - ( T / _i ) ) = 0 <-> ( 3 x. _pi ) = ( T / _i ) ) ) | 
						
							| 168 | 167 | biimpar |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( 3 x. _pi ) - ( T / _i ) ) = 0 ) | 
						
							| 169 | 158 168 | eqtr3d |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) + ( _pi - ( Im ` ( log ` A ) ) ) ) = 0 ) | 
						
							| 170 |  | resubcl |  |-  ( ( ( 2 x. _pi ) e. RR /\ ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) e. RR ) -> ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) e. RR ) | 
						
							| 171 | 35 67 170 | sylancr |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) e. RR ) | 
						
							| 172 |  | subge0 |  |-  ( ( ( 2 x. _pi ) e. RR /\ ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) e. RR ) -> ( 0 <_ ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) <-> ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) <_ ( 2 x. _pi ) ) ) | 
						
							| 173 | 35 67 172 | sylancr |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 0 <_ ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) <-> ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) <_ ( 2 x. _pi ) ) ) | 
						
							| 174 | 134 173 | mpbird |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> 0 <_ ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) ) | 
						
							| 175 |  | resubcl |  |-  ( ( _pi e. RR /\ ( Im ` ( log ` A ) ) e. RR ) -> ( _pi - ( Im ` ( log ` A ) ) ) e. RR ) | 
						
							| 176 | 34 70 175 | sylancr |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( _pi - ( Im ` ( log ` A ) ) ) e. RR ) | 
						
							| 177 |  | subge0 |  |-  ( ( _pi e. RR /\ ( Im ` ( log ` A ) ) e. RR ) -> ( 0 <_ ( _pi - ( Im ` ( log ` A ) ) ) <-> ( Im ` ( log ` A ) ) <_ _pi ) ) | 
						
							| 178 | 34 70 177 | sylancr |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 0 <_ ( _pi - ( Im ` ( log ` A ) ) ) <-> ( Im ` ( log ` A ) ) <_ _pi ) ) | 
						
							| 179 | 135 178 | mpbird |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> 0 <_ ( _pi - ( Im ` ( log ` A ) ) ) ) | 
						
							| 180 |  | add20 |  |-  ( ( ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) e. RR /\ 0 <_ ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) ) /\ ( ( _pi - ( Im ` ( log ` A ) ) ) e. RR /\ 0 <_ ( _pi - ( Im ` ( log ` A ) ) ) ) ) -> ( ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) + ( _pi - ( Im ` ( log ` A ) ) ) ) = 0 <-> ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) = 0 /\ ( _pi - ( Im ` ( log ` A ) ) ) = 0 ) ) ) | 
						
							| 181 | 171 174 176 179 180 | syl22anc |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) + ( _pi - ( Im ` ( log ` A ) ) ) ) = 0 <-> ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) = 0 /\ ( _pi - ( Im ` ( log ` A ) ) ) = 0 ) ) ) | 
						
							| 182 | 181 | biimpa |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) + ( _pi - ( Im ` ( log ` A ) ) ) ) = 0 ) -> ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) = 0 /\ ( _pi - ( Im ` ( log ` A ) ) ) = 0 ) ) | 
						
							| 183 | 169 182 | syldan |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) = 0 /\ ( _pi - ( Im ` ( log ` A ) ) ) = 0 ) ) | 
						
							| 184 | 183 | simprd |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( _pi - ( Im ` ( log ` A ) ) ) = 0 ) | 
						
							| 185 | 155 | adantr |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( Im ` ( log ` A ) ) e. CC ) | 
						
							| 186 |  | subeq0 |  |-  ( ( _pi e. CC /\ ( Im ` ( log ` A ) ) e. CC ) -> ( ( _pi - ( Im ` ( log ` A ) ) ) = 0 <-> _pi = ( Im ` ( log ` A ) ) ) ) | 
						
							| 187 | 25 185 186 | sylancr |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( _pi - ( Im ` ( log ` A ) ) ) = 0 <-> _pi = ( Im ` ( log ` A ) ) ) ) | 
						
							| 188 | 184 187 | mpbid |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> _pi = ( Im ` ( log ` A ) ) ) | 
						
							| 189 | 188 | eqcomd |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( Im ` ( log ` A ) ) = _pi ) | 
						
							| 190 |  | lognegb |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( -u A e. RR+ <-> ( Im ` ( log ` A ) ) = _pi ) ) | 
						
							| 191 | 190 | 3adant3 |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u A e. RR+ <-> ( Im ` ( log ` A ) ) = _pi ) ) | 
						
							| 192 | 191 | adantr |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( -u A e. RR+ <-> ( Im ` ( log ` A ) ) = _pi ) ) | 
						
							| 193 | 189 192 | mpbird |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> -u A e. RR+ ) | 
						
							| 194 |  | rpaddcl |  |-  ( ( 1 e. RR+ /\ -u A e. RR+ ) -> ( 1 + -u A ) e. RR+ ) | 
						
							| 195 | 150 193 194 | sylancr |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( 1 + -u A ) e. RR+ ) | 
						
							| 196 | 149 195 | eqeltrrd |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( 1 - A ) e. RR+ ) | 
						
							| 197 | 196 | rpreccld |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( 1 / ( 1 - A ) ) e. RR+ ) | 
						
							| 198 | 197 | relogcld |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( log ` ( 1 / ( 1 - A ) ) ) e. RR ) | 
						
							| 199 |  | negsubdi2 |  |-  ( ( A e. CC /\ 1 e. CC ) -> -u ( A - 1 ) = ( 1 - A ) ) | 
						
							| 200 | 44 12 199 | sylancl |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u ( A - 1 ) = ( 1 - A ) ) | 
						
							| 201 | 200 | oveq1d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u ( A - 1 ) / -u A ) = ( ( 1 - A ) / -u A ) ) | 
						
							| 202 | 57 44 58 | div2negd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u ( A - 1 ) / -u A ) = ( ( A - 1 ) / A ) ) | 
						
							| 203 | 201 202 | eqtr3d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 1 - A ) / -u A ) = ( ( A - 1 ) / A ) ) | 
						
							| 204 | 203 | adantr |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( 1 - A ) / -u A ) = ( ( A - 1 ) / A ) ) | 
						
							| 205 | 196 193 | rpdivcld |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( 1 - A ) / -u A ) e. RR+ ) | 
						
							| 206 | 204 205 | eqeltrrd |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( A - 1 ) / A ) e. RR+ ) | 
						
							| 207 | 206 | relogcld |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( log ` ( ( A - 1 ) / A ) ) e. RR ) | 
						
							| 208 | 198 207 | readdcld |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) e. RR ) | 
						
							| 209 | 208 | reim0d |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) = 0 ) | 
						
							| 210 | 209 | oveq2d |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) = ( ( 2 x. _pi ) - 0 ) ) | 
						
							| 211 | 183 | simpld |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) = 0 ) | 
						
							| 212 | 210 211 | eqtr3d |  |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( 2 x. _pi ) - 0 ) = 0 ) | 
						
							| 213 | 212 | ex |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 3 x. _pi ) = ( T / _i ) -> ( ( 2 x. _pi ) - 0 ) = 0 ) ) | 
						
							| 214 | 213 | necon3d |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( 2 x. _pi ) - 0 ) =/= 0 -> ( 3 x. _pi ) =/= ( T / _i ) ) ) | 
						
							| 215 | 146 214 | mpi |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 3 x. _pi ) =/= ( T / _i ) ) | 
						
							| 216 |  | ltlen |  |-  ( ( ( T / _i ) e. RR /\ ( 3 x. _pi ) e. RR ) -> ( ( T / _i ) < ( 3 x. _pi ) <-> ( ( T / _i ) <_ ( 3 x. _pi ) /\ ( 3 x. _pi ) =/= ( T / _i ) ) ) ) | 
						
							| 217 | 103 159 216 | sylancl |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T / _i ) < ( 3 x. _pi ) <-> ( ( T / _i ) <_ ( 3 x. _pi ) /\ ( 3 x. _pi ) =/= ( T / _i ) ) ) ) | 
						
							| 218 | 144 215 217 | mpbir2and |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T / _i ) < ( 3 x. _pi ) ) | 
						
							| 219 | 218 31 | breqtrrdi |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T / _i ) < ( ( 3 / 2 ) x. ( 2 x. _pi ) ) ) | 
						
							| 220 | 23 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 3 / 2 ) e. RR ) | 
						
							| 221 |  | ltdivmul2 |  |-  ( ( ( T / _i ) e. RR /\ ( 3 / 2 ) e. RR /\ ( ( 2 x. _pi ) e. RR /\ 0 < ( 2 x. _pi ) ) ) -> ( ( ( T / _i ) / ( 2 x. _pi ) ) < ( 3 / 2 ) <-> ( T / _i ) < ( ( 3 / 2 ) x. ( 2 x. _pi ) ) ) ) | 
						
							| 222 | 103 220 110 114 221 | syl112anc |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( T / _i ) / ( 2 x. _pi ) ) < ( 3 / 2 ) <-> ( T / _i ) < ( ( 3 / 2 ) x. ( 2 x. _pi ) ) ) ) | 
						
							| 223 | 219 222 | mpbird |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T / _i ) / ( 2 x. _pi ) ) < ( 3 / 2 ) ) | 
						
							| 224 | 87 | oveq1i |  |-  ( 3 / 2 ) = ( ( 2 + 1 ) / 2 ) | 
						
							| 225 | 4 12 4 28 | divdiri |  |-  ( ( 2 + 1 ) / 2 ) = ( ( 2 / 2 ) + ( 1 / 2 ) ) | 
						
							| 226 |  | 2div2e1 |  |-  ( 2 / 2 ) = 1 | 
						
							| 227 | 226 | oveq1i |  |-  ( ( 2 / 2 ) + ( 1 / 2 ) ) = ( 1 + ( 1 / 2 ) ) | 
						
							| 228 | 224 225 227 | 3eqtri |  |-  ( 3 / 2 ) = ( 1 + ( 1 / 2 ) ) | 
						
							| 229 | 223 228 | breqtrdi |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T / _i ) / ( 2 x. _pi ) ) < ( 1 + ( 1 / 2 ) ) ) | 
						
							| 230 | 5 | a1i |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> 1 e. RR ) | 
						
							| 231 | 124 121 230 | ltsubaddd |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) < 1 <-> ( ( T / _i ) / ( 2 x. _pi ) ) < ( 1 + ( 1 / 2 ) ) ) ) | 
						
							| 232 | 229 231 | mpbird |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) < 1 ) | 
						
							| 233 | 3 232 | eqbrtrid |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> N < 1 ) | 
						
							| 234 | 127 233 | jca |  |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u 2 < N /\ N < 1 ) ) |