Step |
Hyp |
Ref |
Expression |
1 |
|
ang.1 |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
2 |
|
ang180lem1.2 |
|- T = ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) |
3 |
|
ang180lem1.3 |
|- N = ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) |
4 |
|
2cn |
|- 2 e. CC |
5 |
|
1re |
|- 1 e. RR |
6 |
5
|
rehalfcli |
|- ( 1 / 2 ) e. RR |
7 |
6
|
recni |
|- ( 1 / 2 ) e. CC |
8 |
4 7
|
negsubdii |
|- -u ( 2 - ( 1 / 2 ) ) = ( -u 2 + ( 1 / 2 ) ) |
9 |
|
4d2e2 |
|- ( 4 / 2 ) = 2 |
10 |
9
|
oveq1i |
|- ( ( 4 / 2 ) - ( 1 / 2 ) ) = ( 2 - ( 1 / 2 ) ) |
11 |
|
4cn |
|- 4 e. CC |
12 |
|
ax-1cn |
|- 1 e. CC |
13 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
14 |
|
divsubdir |
|- ( ( 4 e. CC /\ 1 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 4 - 1 ) / 2 ) = ( ( 4 / 2 ) - ( 1 / 2 ) ) ) |
15 |
11 12 13 14
|
mp3an |
|- ( ( 4 - 1 ) / 2 ) = ( ( 4 / 2 ) - ( 1 / 2 ) ) |
16 |
|
4m1e3 |
|- ( 4 - 1 ) = 3 |
17 |
16
|
oveq1i |
|- ( ( 4 - 1 ) / 2 ) = ( 3 / 2 ) |
18 |
15 17
|
eqtr3i |
|- ( ( 4 / 2 ) - ( 1 / 2 ) ) = ( 3 / 2 ) |
19 |
10 18
|
eqtr3i |
|- ( 2 - ( 1 / 2 ) ) = ( 3 / 2 ) |
20 |
19
|
negeqi |
|- -u ( 2 - ( 1 / 2 ) ) = -u ( 3 / 2 ) |
21 |
8 20
|
eqtr3i |
|- ( -u 2 + ( 1 / 2 ) ) = -u ( 3 / 2 ) |
22 |
|
3re |
|- 3 e. RR |
23 |
22
|
rehalfcli |
|- ( 3 / 2 ) e. RR |
24 |
23
|
recni |
|- ( 3 / 2 ) e. CC |
25 |
|
picn |
|- _pi e. CC |
26 |
24 4 25
|
mulassi |
|- ( ( ( 3 / 2 ) x. 2 ) x. _pi ) = ( ( 3 / 2 ) x. ( 2 x. _pi ) ) |
27 |
|
3cn |
|- 3 e. CC |
28 |
|
2ne0 |
|- 2 =/= 0 |
29 |
27 4 28
|
divcan1i |
|- ( ( 3 / 2 ) x. 2 ) = 3 |
30 |
29
|
oveq1i |
|- ( ( ( 3 / 2 ) x. 2 ) x. _pi ) = ( 3 x. _pi ) |
31 |
26 30
|
eqtr3i |
|- ( ( 3 / 2 ) x. ( 2 x. _pi ) ) = ( 3 x. _pi ) |
32 |
31
|
negeqi |
|- -u ( ( 3 / 2 ) x. ( 2 x. _pi ) ) = -u ( 3 x. _pi ) |
33 |
|
2re |
|- 2 e. RR |
34 |
|
pire |
|- _pi e. RR |
35 |
33 34
|
remulcli |
|- ( 2 x. _pi ) e. RR |
36 |
35
|
recni |
|- ( 2 x. _pi ) e. CC |
37 |
24 36
|
mulneg1i |
|- ( -u ( 3 / 2 ) x. ( 2 x. _pi ) ) = -u ( ( 3 / 2 ) x. ( 2 x. _pi ) ) |
38 |
27 25
|
mulneg2i |
|- ( 3 x. -u _pi ) = -u ( 3 x. _pi ) |
39 |
32 37 38
|
3eqtr4i |
|- ( -u ( 3 / 2 ) x. ( 2 x. _pi ) ) = ( 3 x. -u _pi ) |
40 |
34
|
renegcli |
|- -u _pi e. RR |
41 |
33 40
|
remulcli |
|- ( 2 x. -u _pi ) e. RR |
42 |
41
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. -u _pi ) e. RR ) |
43 |
40
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u _pi e. RR ) |
44 |
|
simp1 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A e. CC ) |
45 |
|
subcl |
|- ( ( 1 e. CC /\ A e. CC ) -> ( 1 - A ) e. CC ) |
46 |
12 44 45
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 - A ) e. CC ) |
47 |
|
simp3 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A =/= 1 ) |
48 |
47
|
necomd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> 1 =/= A ) |
49 |
|
subeq0 |
|- ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
50 |
12 44 49
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
51 |
50
|
necon3bid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 1 - A ) =/= 0 <-> 1 =/= A ) ) |
52 |
48 51
|
mpbird |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 - A ) =/= 0 ) |
53 |
46 52
|
reccld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 / ( 1 - A ) ) e. CC ) |
54 |
46 52
|
recne0d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 / ( 1 - A ) ) =/= 0 ) |
55 |
53 54
|
logcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` ( 1 / ( 1 - A ) ) ) e. CC ) |
56 |
|
subcl |
|- ( ( A e. CC /\ 1 e. CC ) -> ( A - 1 ) e. CC ) |
57 |
44 12 56
|
sylancl |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A - 1 ) e. CC ) |
58 |
|
simp2 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A =/= 0 ) |
59 |
57 44 58
|
divcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) / A ) e. CC ) |
60 |
|
subeq0 |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A - 1 ) = 0 <-> A = 1 ) ) |
61 |
44 12 60
|
sylancl |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) = 0 <-> A = 1 ) ) |
62 |
61
|
necon3bid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) =/= 0 <-> A =/= 1 ) ) |
63 |
47 62
|
mpbird |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A - 1 ) =/= 0 ) |
64 |
57 44 63 58
|
divne0d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) / A ) =/= 0 ) |
65 |
59 64
|
logcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` ( ( A - 1 ) / A ) ) e. CC ) |
66 |
55 65
|
addcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) e. CC ) |
67 |
66
|
imcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) e. RR ) |
68 |
|
logcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
69 |
68
|
3adant3 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` A ) e. CC ) |
70 |
69
|
imcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( log ` A ) ) e. RR ) |
71 |
55
|
imcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( log ` ( 1 / ( 1 - A ) ) ) ) e. RR ) |
72 |
65
|
imcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( log ` ( ( A - 1 ) / A ) ) ) e. RR ) |
73 |
53 54
|
logimcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u _pi < ( Im ` ( log ` ( 1 / ( 1 - A ) ) ) ) /\ ( Im ` ( log ` ( 1 / ( 1 - A ) ) ) ) <_ _pi ) ) |
74 |
73
|
simpld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u _pi < ( Im ` ( log ` ( 1 / ( 1 - A ) ) ) ) ) |
75 |
59 64
|
logimcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u _pi < ( Im ` ( log ` ( ( A - 1 ) / A ) ) ) /\ ( Im ` ( log ` ( ( A - 1 ) / A ) ) ) <_ _pi ) ) |
76 |
75
|
simpld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u _pi < ( Im ` ( log ` ( ( A - 1 ) / A ) ) ) ) |
77 |
43 43 71 72 74 76
|
lt2addd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u _pi + -u _pi ) < ( ( Im ` ( log ` ( 1 / ( 1 - A ) ) ) ) + ( Im ` ( log ` ( ( A - 1 ) / A ) ) ) ) ) |
78 |
|
negpicn |
|- -u _pi e. CC |
79 |
78
|
2timesi |
|- ( 2 x. -u _pi ) = ( -u _pi + -u _pi ) |
80 |
79
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. -u _pi ) = ( -u _pi + -u _pi ) ) |
81 |
55 65
|
imaddd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) = ( ( Im ` ( log ` ( 1 / ( 1 - A ) ) ) ) + ( Im ` ( log ` ( ( A - 1 ) / A ) ) ) ) ) |
82 |
77 80 81
|
3brtr4d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. -u _pi ) < ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) |
83 |
|
logimcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( -u _pi < ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) ) |
84 |
83
|
3adant3 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u _pi < ( Im ` ( log ` A ) ) /\ ( Im ` ( log ` A ) ) <_ _pi ) ) |
85 |
84
|
simpld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u _pi < ( Im ` ( log ` A ) ) ) |
86 |
42 43 67 70 82 85
|
lt2addd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 2 x. -u _pi ) + -u _pi ) < ( ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) + ( Im ` ( log ` A ) ) ) ) |
87 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
88 |
87
|
oveq1i |
|- ( 3 x. -u _pi ) = ( ( 2 + 1 ) x. -u _pi ) |
89 |
4 12 78
|
adddiri |
|- ( ( 2 + 1 ) x. -u _pi ) = ( ( 2 x. -u _pi ) + ( 1 x. -u _pi ) ) |
90 |
78
|
mulid2i |
|- ( 1 x. -u _pi ) = -u _pi |
91 |
90
|
oveq2i |
|- ( ( 2 x. -u _pi ) + ( 1 x. -u _pi ) ) = ( ( 2 x. -u _pi ) + -u _pi ) |
92 |
88 89 91
|
3eqtri |
|- ( 3 x. -u _pi ) = ( ( 2 x. -u _pi ) + -u _pi ) |
93 |
92
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 3 x. -u _pi ) = ( ( 2 x. -u _pi ) + -u _pi ) ) |
94 |
2
|
fveq2i |
|- ( Im ` T ) = ( Im ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) |
95 |
66 69
|
imaddd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) = ( ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) + ( Im ` ( log ` A ) ) ) ) |
96 |
94 95
|
eqtrid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` T ) = ( ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) + ( Im ` ( log ` A ) ) ) ) |
97 |
86 93 96
|
3brtr4d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 3 x. -u _pi ) < ( Im ` T ) ) |
98 |
66 69
|
addcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) e. CC ) |
99 |
2 98
|
eqeltrid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> T e. CC ) |
100 |
|
imval |
|- ( T e. CC -> ( Im ` T ) = ( Re ` ( T / _i ) ) ) |
101 |
99 100
|
syl |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` T ) = ( Re ` ( T / _i ) ) ) |
102 |
1 2 3
|
ang180lem1 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( N e. ZZ /\ ( T / _i ) e. RR ) ) |
103 |
102
|
simprd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T / _i ) e. RR ) |
104 |
103
|
rered |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Re ` ( T / _i ) ) = ( T / _i ) ) |
105 |
101 104
|
eqtrd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` T ) = ( T / _i ) ) |
106 |
97 105
|
breqtrd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 3 x. -u _pi ) < ( T / _i ) ) |
107 |
39 106
|
eqbrtrid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u ( 3 / 2 ) x. ( 2 x. _pi ) ) < ( T / _i ) ) |
108 |
23
|
renegcli |
|- -u ( 3 / 2 ) e. RR |
109 |
108
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u ( 3 / 2 ) e. RR ) |
110 |
35
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. _pi ) e. RR ) |
111 |
|
2pos |
|- 0 < 2 |
112 |
|
pipos |
|- 0 < _pi |
113 |
33 34 111 112
|
mulgt0ii |
|- 0 < ( 2 x. _pi ) |
114 |
113
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> 0 < ( 2 x. _pi ) ) |
115 |
|
ltmuldiv |
|- ( ( -u ( 3 / 2 ) e. RR /\ ( T / _i ) e. RR /\ ( ( 2 x. _pi ) e. RR /\ 0 < ( 2 x. _pi ) ) ) -> ( ( -u ( 3 / 2 ) x. ( 2 x. _pi ) ) < ( T / _i ) <-> -u ( 3 / 2 ) < ( ( T / _i ) / ( 2 x. _pi ) ) ) ) |
116 |
109 103 110 114 115
|
syl112anc |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( -u ( 3 / 2 ) x. ( 2 x. _pi ) ) < ( T / _i ) <-> -u ( 3 / 2 ) < ( ( T / _i ) / ( 2 x. _pi ) ) ) ) |
117 |
107 116
|
mpbid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u ( 3 / 2 ) < ( ( T / _i ) / ( 2 x. _pi ) ) ) |
118 |
21 117
|
eqbrtrid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u 2 + ( 1 / 2 ) ) < ( ( T / _i ) / ( 2 x. _pi ) ) ) |
119 |
33
|
renegcli |
|- -u 2 e. RR |
120 |
119
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u 2 e. RR ) |
121 |
6
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 / 2 ) e. RR ) |
122 |
35 113
|
gt0ne0ii |
|- ( 2 x. _pi ) =/= 0 |
123 |
122
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. _pi ) =/= 0 ) |
124 |
103 110 123
|
redivcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T / _i ) / ( 2 x. _pi ) ) e. RR ) |
125 |
120 121 124
|
ltaddsubd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( -u 2 + ( 1 / 2 ) ) < ( ( T / _i ) / ( 2 x. _pi ) ) <-> -u 2 < ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) ) ) |
126 |
118 125
|
mpbid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u 2 < ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) ) |
127 |
126 3
|
breqtrrdi |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u 2 < N ) |
128 |
34
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> _pi e. RR ) |
129 |
73
|
simprd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( log ` ( 1 / ( 1 - A ) ) ) ) <_ _pi ) |
130 |
75
|
simprd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( log ` ( ( A - 1 ) / A ) ) ) <_ _pi ) |
131 |
71 72 128 128 129 130
|
le2addd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( Im ` ( log ` ( 1 / ( 1 - A ) ) ) ) + ( Im ` ( log ` ( ( A - 1 ) / A ) ) ) ) <_ ( _pi + _pi ) ) |
132 |
25
|
2timesi |
|- ( 2 x. _pi ) = ( _pi + _pi ) |
133 |
132
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. _pi ) = ( _pi + _pi ) ) |
134 |
131 81 133
|
3brtr4d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) <_ ( 2 x. _pi ) ) |
135 |
84
|
simprd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( log ` A ) ) <_ _pi ) |
136 |
67 70 110 128 134 135
|
le2addd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) + ( Im ` ( log ` A ) ) ) <_ ( ( 2 x. _pi ) + _pi ) ) |
137 |
105 96
|
eqtr3d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T / _i ) = ( ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) + ( Im ` ( log ` A ) ) ) ) |
138 |
87
|
oveq1i |
|- ( 3 x. _pi ) = ( ( 2 + 1 ) x. _pi ) |
139 |
4 12 25
|
adddiri |
|- ( ( 2 + 1 ) x. _pi ) = ( ( 2 x. _pi ) + ( 1 x. _pi ) ) |
140 |
25
|
mulid2i |
|- ( 1 x. _pi ) = _pi |
141 |
140
|
oveq2i |
|- ( ( 2 x. _pi ) + ( 1 x. _pi ) ) = ( ( 2 x. _pi ) + _pi ) |
142 |
138 139 141
|
3eqtri |
|- ( 3 x. _pi ) = ( ( 2 x. _pi ) + _pi ) |
143 |
142
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 3 x. _pi ) = ( ( 2 x. _pi ) + _pi ) ) |
144 |
136 137 143
|
3brtr4d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T / _i ) <_ ( 3 x. _pi ) ) |
145 |
36
|
subid1i |
|- ( ( 2 x. _pi ) - 0 ) = ( 2 x. _pi ) |
146 |
145 122
|
eqnetri |
|- ( ( 2 x. _pi ) - 0 ) =/= 0 |
147 |
|
negsub |
|- ( ( 1 e. CC /\ A e. CC ) -> ( 1 + -u A ) = ( 1 - A ) ) |
148 |
12 44 147
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 + -u A ) = ( 1 - A ) ) |
149 |
148
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( 1 + -u A ) = ( 1 - A ) ) |
150 |
|
1rp |
|- 1 e. RR+ |
151 |
143 137
|
oveq12d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 3 x. _pi ) - ( T / _i ) ) = ( ( ( 2 x. _pi ) + _pi ) - ( ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) + ( Im ` ( log ` A ) ) ) ) ) |
152 |
36
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. _pi ) e. CC ) |
153 |
25
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> _pi e. CC ) |
154 |
67
|
recnd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) e. CC ) |
155 |
70
|
recnd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( log ` A ) ) e. CC ) |
156 |
152 153 154 155
|
addsub4d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( 2 x. _pi ) + _pi ) - ( ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) + ( Im ` ( log ` A ) ) ) ) = ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) + ( _pi - ( Im ` ( log ` A ) ) ) ) ) |
157 |
151 156
|
eqtrd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 3 x. _pi ) - ( T / _i ) ) = ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) + ( _pi - ( Im ` ( log ` A ) ) ) ) ) |
158 |
157
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( 3 x. _pi ) - ( T / _i ) ) = ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) + ( _pi - ( Im ` ( log ` A ) ) ) ) ) |
159 |
22 34
|
remulcli |
|- ( 3 x. _pi ) e. RR |
160 |
159
|
recni |
|- ( 3 x. _pi ) e. CC |
161 |
|
ax-icn |
|- _i e. CC |
162 |
161
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> _i e. CC ) |
163 |
|
ine0 |
|- _i =/= 0 |
164 |
163
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> _i =/= 0 ) |
165 |
99 162 164
|
divcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T / _i ) e. CC ) |
166 |
|
subeq0 |
|- ( ( ( 3 x. _pi ) e. CC /\ ( T / _i ) e. CC ) -> ( ( ( 3 x. _pi ) - ( T / _i ) ) = 0 <-> ( 3 x. _pi ) = ( T / _i ) ) ) |
167 |
160 165 166
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( 3 x. _pi ) - ( T / _i ) ) = 0 <-> ( 3 x. _pi ) = ( T / _i ) ) ) |
168 |
167
|
biimpar |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( 3 x. _pi ) - ( T / _i ) ) = 0 ) |
169 |
158 168
|
eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) + ( _pi - ( Im ` ( log ` A ) ) ) ) = 0 ) |
170 |
|
resubcl |
|- ( ( ( 2 x. _pi ) e. RR /\ ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) e. RR ) -> ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) e. RR ) |
171 |
35 67 170
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) e. RR ) |
172 |
|
subge0 |
|- ( ( ( 2 x. _pi ) e. RR /\ ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) e. RR ) -> ( 0 <_ ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) <-> ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) <_ ( 2 x. _pi ) ) ) |
173 |
35 67 172
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 0 <_ ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) <-> ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) <_ ( 2 x. _pi ) ) ) |
174 |
134 173
|
mpbird |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> 0 <_ ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) ) |
175 |
|
resubcl |
|- ( ( _pi e. RR /\ ( Im ` ( log ` A ) ) e. RR ) -> ( _pi - ( Im ` ( log ` A ) ) ) e. RR ) |
176 |
34 70 175
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( _pi - ( Im ` ( log ` A ) ) ) e. RR ) |
177 |
|
subge0 |
|- ( ( _pi e. RR /\ ( Im ` ( log ` A ) ) e. RR ) -> ( 0 <_ ( _pi - ( Im ` ( log ` A ) ) ) <-> ( Im ` ( log ` A ) ) <_ _pi ) ) |
178 |
34 70 177
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 0 <_ ( _pi - ( Im ` ( log ` A ) ) ) <-> ( Im ` ( log ` A ) ) <_ _pi ) ) |
179 |
135 178
|
mpbird |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> 0 <_ ( _pi - ( Im ` ( log ` A ) ) ) ) |
180 |
|
add20 |
|- ( ( ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) e. RR /\ 0 <_ ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) ) /\ ( ( _pi - ( Im ` ( log ` A ) ) ) e. RR /\ 0 <_ ( _pi - ( Im ` ( log ` A ) ) ) ) ) -> ( ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) + ( _pi - ( Im ` ( log ` A ) ) ) ) = 0 <-> ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) = 0 /\ ( _pi - ( Im ` ( log ` A ) ) ) = 0 ) ) ) |
181 |
171 174 176 179 180
|
syl22anc |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) + ( _pi - ( Im ` ( log ` A ) ) ) ) = 0 <-> ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) = 0 /\ ( _pi - ( Im ` ( log ` A ) ) ) = 0 ) ) ) |
182 |
181
|
biimpa |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) + ( _pi - ( Im ` ( log ` A ) ) ) ) = 0 ) -> ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) = 0 /\ ( _pi - ( Im ` ( log ` A ) ) ) = 0 ) ) |
183 |
169 182
|
syldan |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) = 0 /\ ( _pi - ( Im ` ( log ` A ) ) ) = 0 ) ) |
184 |
183
|
simprd |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( _pi - ( Im ` ( log ` A ) ) ) = 0 ) |
185 |
155
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( Im ` ( log ` A ) ) e. CC ) |
186 |
|
subeq0 |
|- ( ( _pi e. CC /\ ( Im ` ( log ` A ) ) e. CC ) -> ( ( _pi - ( Im ` ( log ` A ) ) ) = 0 <-> _pi = ( Im ` ( log ` A ) ) ) ) |
187 |
25 185 186
|
sylancr |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( _pi - ( Im ` ( log ` A ) ) ) = 0 <-> _pi = ( Im ` ( log ` A ) ) ) ) |
188 |
184 187
|
mpbid |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> _pi = ( Im ` ( log ` A ) ) ) |
189 |
188
|
eqcomd |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( Im ` ( log ` A ) ) = _pi ) |
190 |
|
lognegb |
|- ( ( A e. CC /\ A =/= 0 ) -> ( -u A e. RR+ <-> ( Im ` ( log ` A ) ) = _pi ) ) |
191 |
190
|
3adant3 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u A e. RR+ <-> ( Im ` ( log ` A ) ) = _pi ) ) |
192 |
191
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( -u A e. RR+ <-> ( Im ` ( log ` A ) ) = _pi ) ) |
193 |
189 192
|
mpbird |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> -u A e. RR+ ) |
194 |
|
rpaddcl |
|- ( ( 1 e. RR+ /\ -u A e. RR+ ) -> ( 1 + -u A ) e. RR+ ) |
195 |
150 193 194
|
sylancr |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( 1 + -u A ) e. RR+ ) |
196 |
149 195
|
eqeltrrd |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( 1 - A ) e. RR+ ) |
197 |
196
|
rpreccld |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( 1 / ( 1 - A ) ) e. RR+ ) |
198 |
197
|
relogcld |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( log ` ( 1 / ( 1 - A ) ) ) e. RR ) |
199 |
|
negsubdi2 |
|- ( ( A e. CC /\ 1 e. CC ) -> -u ( A - 1 ) = ( 1 - A ) ) |
200 |
44 12 199
|
sylancl |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u ( A - 1 ) = ( 1 - A ) ) |
201 |
200
|
oveq1d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u ( A - 1 ) / -u A ) = ( ( 1 - A ) / -u A ) ) |
202 |
57 44 58
|
div2negd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u ( A - 1 ) / -u A ) = ( ( A - 1 ) / A ) ) |
203 |
201 202
|
eqtr3d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 1 - A ) / -u A ) = ( ( A - 1 ) / A ) ) |
204 |
203
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( 1 - A ) / -u A ) = ( ( A - 1 ) / A ) ) |
205 |
196 193
|
rpdivcld |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( 1 - A ) / -u A ) e. RR+ ) |
206 |
204 205
|
eqeltrrd |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( A - 1 ) / A ) e. RR+ ) |
207 |
206
|
relogcld |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( log ` ( ( A - 1 ) / A ) ) e. RR ) |
208 |
198 207
|
readdcld |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) e. RR ) |
209 |
208
|
reim0d |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) = 0 ) |
210 |
209
|
oveq2d |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) = ( ( 2 x. _pi ) - 0 ) ) |
211 |
183
|
simpld |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( 2 x. _pi ) - ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) = 0 ) |
212 |
210 211
|
eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( 3 x. _pi ) = ( T / _i ) ) -> ( ( 2 x. _pi ) - 0 ) = 0 ) |
213 |
212
|
ex |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 3 x. _pi ) = ( T / _i ) -> ( ( 2 x. _pi ) - 0 ) = 0 ) ) |
214 |
213
|
necon3d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( 2 x. _pi ) - 0 ) =/= 0 -> ( 3 x. _pi ) =/= ( T / _i ) ) ) |
215 |
146 214
|
mpi |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 3 x. _pi ) =/= ( T / _i ) ) |
216 |
|
ltlen |
|- ( ( ( T / _i ) e. RR /\ ( 3 x. _pi ) e. RR ) -> ( ( T / _i ) < ( 3 x. _pi ) <-> ( ( T / _i ) <_ ( 3 x. _pi ) /\ ( 3 x. _pi ) =/= ( T / _i ) ) ) ) |
217 |
103 159 216
|
sylancl |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T / _i ) < ( 3 x. _pi ) <-> ( ( T / _i ) <_ ( 3 x. _pi ) /\ ( 3 x. _pi ) =/= ( T / _i ) ) ) ) |
218 |
144 215 217
|
mpbir2and |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T / _i ) < ( 3 x. _pi ) ) |
219 |
218 31
|
breqtrrdi |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T / _i ) < ( ( 3 / 2 ) x. ( 2 x. _pi ) ) ) |
220 |
23
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 3 / 2 ) e. RR ) |
221 |
|
ltdivmul2 |
|- ( ( ( T / _i ) e. RR /\ ( 3 / 2 ) e. RR /\ ( ( 2 x. _pi ) e. RR /\ 0 < ( 2 x. _pi ) ) ) -> ( ( ( T / _i ) / ( 2 x. _pi ) ) < ( 3 / 2 ) <-> ( T / _i ) < ( ( 3 / 2 ) x. ( 2 x. _pi ) ) ) ) |
222 |
103 220 110 114 221
|
syl112anc |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( T / _i ) / ( 2 x. _pi ) ) < ( 3 / 2 ) <-> ( T / _i ) < ( ( 3 / 2 ) x. ( 2 x. _pi ) ) ) ) |
223 |
219 222
|
mpbird |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T / _i ) / ( 2 x. _pi ) ) < ( 3 / 2 ) ) |
224 |
87
|
oveq1i |
|- ( 3 / 2 ) = ( ( 2 + 1 ) / 2 ) |
225 |
4 12 4 28
|
divdiri |
|- ( ( 2 + 1 ) / 2 ) = ( ( 2 / 2 ) + ( 1 / 2 ) ) |
226 |
|
2div2e1 |
|- ( 2 / 2 ) = 1 |
227 |
226
|
oveq1i |
|- ( ( 2 / 2 ) + ( 1 / 2 ) ) = ( 1 + ( 1 / 2 ) ) |
228 |
224 225 227
|
3eqtri |
|- ( 3 / 2 ) = ( 1 + ( 1 / 2 ) ) |
229 |
223 228
|
breqtrdi |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T / _i ) / ( 2 x. _pi ) ) < ( 1 + ( 1 / 2 ) ) ) |
230 |
5
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> 1 e. RR ) |
231 |
124 121 230
|
ltsubaddd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) < 1 <-> ( ( T / _i ) / ( 2 x. _pi ) ) < ( 1 + ( 1 / 2 ) ) ) ) |
232 |
229 231
|
mpbird |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) < 1 ) |
233 |
3 232
|
eqbrtrid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> N < 1 ) |
234 |
127 233
|
jca |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u 2 < N /\ N < 1 ) ) |