Step |
Hyp |
Ref |
Expression |
1 |
|
ang.1 |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
2 |
|
1cnd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> 1 e. CC ) |
3 |
|
simp1 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A e. CC ) |
4 |
2 3
|
subcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 - A ) e. CC ) |
5 |
|
simp3 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A =/= 1 ) |
6 |
5
|
necomd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> 1 =/= A ) |
7 |
2 3 6
|
subne0d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 - A ) =/= 0 ) |
8 |
|
ax-1ne0 |
|- 1 =/= 0 |
9 |
8
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> 1 =/= 0 ) |
10 |
1 4 7 2 9
|
angvald |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 1 - A ) F 1 ) = ( Im ` ( log ` ( 1 / ( 1 - A ) ) ) ) ) |
11 |
|
simp2 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A =/= 0 ) |
12 |
3 2
|
subcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A - 1 ) e. CC ) |
13 |
3 2 5
|
subne0d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A - 1 ) =/= 0 ) |
14 |
1 3 11 12 13
|
angvald |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A F ( A - 1 ) ) = ( Im ` ( log ` ( ( A - 1 ) / A ) ) ) ) |
15 |
10 14
|
oveq12d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( 1 - A ) F 1 ) + ( A F ( A - 1 ) ) ) = ( ( Im ` ( log ` ( 1 / ( 1 - A ) ) ) ) + ( Im ` ( log ` ( ( A - 1 ) / A ) ) ) ) ) |
16 |
2 4 7
|
divcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 / ( 1 - A ) ) e. CC ) |
17 |
4 7
|
recne0d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 / ( 1 - A ) ) =/= 0 ) |
18 |
16 17
|
logcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` ( 1 / ( 1 - A ) ) ) e. CC ) |
19 |
12 3 11
|
divcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) / A ) e. CC ) |
20 |
12 3 13 11
|
divne0d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) / A ) =/= 0 ) |
21 |
19 20
|
logcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` ( ( A - 1 ) / A ) ) e. CC ) |
22 |
18 21
|
imaddd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) = ( ( Im ` ( log ` ( 1 / ( 1 - A ) ) ) ) + ( Im ` ( log ` ( ( A - 1 ) / A ) ) ) ) ) |
23 |
15 22
|
eqtr4d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( 1 - A ) F 1 ) + ( A F ( A - 1 ) ) ) = ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) ) |
24 |
1 2 9 3 11
|
angvald |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 F A ) = ( Im ` ( log ` ( A / 1 ) ) ) ) |
25 |
3
|
div1d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A / 1 ) = A ) |
26 |
25
|
fveq2d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` ( A / 1 ) ) = ( log ` A ) ) |
27 |
26
|
fveq2d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( log ` ( A / 1 ) ) ) = ( Im ` ( log ` A ) ) ) |
28 |
24 27
|
eqtrd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 F A ) = ( Im ` ( log ` A ) ) ) |
29 |
23 28
|
oveq12d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( ( 1 - A ) F 1 ) + ( A F ( A - 1 ) ) ) + ( 1 F A ) ) = ( ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) + ( Im ` ( log ` A ) ) ) ) |
30 |
18 21
|
addcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) e. CC ) |
31 |
3 11
|
logcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` A ) e. CC ) |
32 |
30 31
|
imaddd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) = ( ( Im ` ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) ) + ( Im ` ( log ` A ) ) ) ) |
33 |
29 32
|
eqtr4d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( ( 1 - A ) F 1 ) + ( A F ( A - 1 ) ) ) + ( 1 F A ) ) = ( Im ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) ) |
34 |
|
eqid |
|- ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) = ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) |
35 |
|
eqid |
|- ( ( ( ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) = ( ( ( ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) |
36 |
1 34 35
|
ang180lem3 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) e. { -u ( _i x. _pi ) , ( _i x. _pi ) } ) |
37 |
|
fveq2 |
|- ( ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) = -u ( _i x. _pi ) -> ( Im ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) = ( Im ` -u ( _i x. _pi ) ) ) |
38 |
|
ax-icn |
|- _i e. CC |
39 |
|
picn |
|- _pi e. CC |
40 |
38 39
|
mulcli |
|- ( _i x. _pi ) e. CC |
41 |
40
|
imnegi |
|- ( Im ` -u ( _i x. _pi ) ) = -u ( Im ` ( _i x. _pi ) ) |
42 |
40
|
addid2i |
|- ( 0 + ( _i x. _pi ) ) = ( _i x. _pi ) |
43 |
42
|
fveq2i |
|- ( Im ` ( 0 + ( _i x. _pi ) ) ) = ( Im ` ( _i x. _pi ) ) |
44 |
|
0re |
|- 0 e. RR |
45 |
|
pire |
|- _pi e. RR |
46 |
44 45
|
crimi |
|- ( Im ` ( 0 + ( _i x. _pi ) ) ) = _pi |
47 |
43 46
|
eqtr3i |
|- ( Im ` ( _i x. _pi ) ) = _pi |
48 |
47
|
negeqi |
|- -u ( Im ` ( _i x. _pi ) ) = -u _pi |
49 |
41 48
|
eqtri |
|- ( Im ` -u ( _i x. _pi ) ) = -u _pi |
50 |
37 49
|
eqtrdi |
|- ( ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) = -u ( _i x. _pi ) -> ( Im ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) = -u _pi ) |
51 |
|
fveq2 |
|- ( ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) = ( _i x. _pi ) -> ( Im ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) = ( Im ` ( _i x. _pi ) ) ) |
52 |
51 47
|
eqtrdi |
|- ( ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) = ( _i x. _pi ) -> ( Im ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) = _pi ) |
53 |
50 52
|
orim12i |
|- ( ( ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) = -u ( _i x. _pi ) \/ ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) = ( _i x. _pi ) ) -> ( ( Im ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) = -u _pi \/ ( Im ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) = _pi ) ) |
54 |
|
ovex |
|- ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) e. _V |
55 |
54
|
elpr |
|- ( ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) e. { -u ( _i x. _pi ) , ( _i x. _pi ) } <-> ( ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) = -u ( _i x. _pi ) \/ ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) = ( _i x. _pi ) ) ) |
56 |
|
fvex |
|- ( Im ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) e. _V |
57 |
56
|
elpr |
|- ( ( Im ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) e. { -u _pi , _pi } <-> ( ( Im ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) = -u _pi \/ ( Im ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) = _pi ) ) |
58 |
53 55 57
|
3imtr4i |
|- ( ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) e. { -u ( _i x. _pi ) , ( _i x. _pi ) } -> ( Im ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) e. { -u _pi , _pi } ) |
59 |
36 58
|
syl |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( Im ` ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) ) e. { -u _pi , _pi } ) |
60 |
33 59
|
eqeltrd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( ( 1 - A ) F 1 ) + ( A F ( A - 1 ) ) ) + ( 1 F A ) ) e. { -u _pi , _pi } ) |