Step |
Hyp |
Ref |
Expression |
1 |
|
ang.1 |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
2 |
|
simp1l |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> A e. CC ) |
3 |
|
1cnd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> 1 e. CC ) |
4 |
|
simp2l |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> B e. CC ) |
5 |
|
simp1r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> A =/= 0 ) |
6 |
4 2 5
|
divcld |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( B / A ) e. CC ) |
7 |
2 3 6
|
subdid |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( A x. ( 1 - ( B / A ) ) ) = ( ( A x. 1 ) - ( A x. ( B / A ) ) ) ) |
8 |
2
|
mulid1d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( A x. 1 ) = A ) |
9 |
4 2 5
|
divcan2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( A x. ( B / A ) ) = B ) |
10 |
8 9
|
oveq12d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( A x. 1 ) - ( A x. ( B / A ) ) ) = ( A - B ) ) |
11 |
7 10
|
eqtrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( A x. ( 1 - ( B / A ) ) ) = ( A - B ) ) |
12 |
11 8
|
oveq12d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( A x. ( 1 - ( B / A ) ) ) F ( A x. 1 ) ) = ( ( A - B ) F A ) ) |
13 |
3 6
|
subcld |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( 1 - ( B / A ) ) e. CC ) |
14 |
|
simp3 |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> A =/= B ) |
15 |
14
|
necomd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> B =/= A ) |
16 |
4 2 5 15
|
divne1d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( B / A ) =/= 1 ) |
17 |
16
|
necomd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> 1 =/= ( B / A ) ) |
18 |
3 6 17
|
subne0d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( 1 - ( B / A ) ) =/= 0 ) |
19 |
|
ax-1ne0 |
|- 1 =/= 0 |
20 |
19
|
a1i |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> 1 =/= 0 ) |
21 |
1
|
angcan |
|- ( ( ( ( 1 - ( B / A ) ) e. CC /\ ( 1 - ( B / A ) ) =/= 0 ) /\ ( 1 e. CC /\ 1 =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( A x. ( 1 - ( B / A ) ) ) F ( A x. 1 ) ) = ( ( 1 - ( B / A ) ) F 1 ) ) |
22 |
13 18 3 20 2 5 21
|
syl222anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( A x. ( 1 - ( B / A ) ) ) F ( A x. 1 ) ) = ( ( 1 - ( B / A ) ) F 1 ) ) |
23 |
12 22
|
eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( A - B ) F A ) = ( ( 1 - ( B / A ) ) F 1 ) ) |
24 |
2 6 3
|
subdid |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( A x. ( ( B / A ) - 1 ) ) = ( ( A x. ( B / A ) ) - ( A x. 1 ) ) ) |
25 |
9 8
|
oveq12d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( A x. ( B / A ) ) - ( A x. 1 ) ) = ( B - A ) ) |
26 |
24 25
|
eqtrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( A x. ( ( B / A ) - 1 ) ) = ( B - A ) ) |
27 |
9 26
|
oveq12d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( A x. ( B / A ) ) F ( A x. ( ( B / A ) - 1 ) ) ) = ( B F ( B - A ) ) ) |
28 |
|
simp2r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> B =/= 0 ) |
29 |
4 2 28 5
|
divne0d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( B / A ) =/= 0 ) |
30 |
6 3
|
subcld |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( B / A ) - 1 ) e. CC ) |
31 |
6 3 16
|
subne0d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( B / A ) - 1 ) =/= 0 ) |
32 |
1
|
angcan |
|- ( ( ( ( B / A ) e. CC /\ ( B / A ) =/= 0 ) /\ ( ( ( B / A ) - 1 ) e. CC /\ ( ( B / A ) - 1 ) =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( A x. ( B / A ) ) F ( A x. ( ( B / A ) - 1 ) ) ) = ( ( B / A ) F ( ( B / A ) - 1 ) ) ) |
33 |
6 29 30 31 2 5 32
|
syl222anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( A x. ( B / A ) ) F ( A x. ( ( B / A ) - 1 ) ) ) = ( ( B / A ) F ( ( B / A ) - 1 ) ) ) |
34 |
27 33
|
eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( B F ( B - A ) ) = ( ( B / A ) F ( ( B / A ) - 1 ) ) ) |
35 |
23 34
|
oveq12d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( ( A - B ) F A ) + ( B F ( B - A ) ) ) = ( ( ( 1 - ( B / A ) ) F 1 ) + ( ( B / A ) F ( ( B / A ) - 1 ) ) ) ) |
36 |
8 9
|
oveq12d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( A x. 1 ) F ( A x. ( B / A ) ) ) = ( A F B ) ) |
37 |
1
|
angcan |
|- ( ( ( 1 e. CC /\ 1 =/= 0 ) /\ ( ( B / A ) e. CC /\ ( B / A ) =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( A x. 1 ) F ( A x. ( B / A ) ) ) = ( 1 F ( B / A ) ) ) |
38 |
3 20 6 29 2 5 37
|
syl222anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( A x. 1 ) F ( A x. ( B / A ) ) ) = ( 1 F ( B / A ) ) ) |
39 |
36 38
|
eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( A F B ) = ( 1 F ( B / A ) ) ) |
40 |
35 39
|
oveq12d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( ( ( A - B ) F A ) + ( B F ( B - A ) ) ) + ( A F B ) ) = ( ( ( ( 1 - ( B / A ) ) F 1 ) + ( ( B / A ) F ( ( B / A ) - 1 ) ) ) + ( 1 F ( B / A ) ) ) ) |
41 |
1
|
ang180lem4 |
|- ( ( ( B / A ) e. CC /\ ( B / A ) =/= 0 /\ ( B / A ) =/= 1 ) -> ( ( ( ( 1 - ( B / A ) ) F 1 ) + ( ( B / A ) F ( ( B / A ) - 1 ) ) ) + ( 1 F ( B / A ) ) ) e. { -u _pi , _pi } ) |
42 |
6 29 16 41
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( ( ( 1 - ( B / A ) ) F 1 ) + ( ( B / A ) F ( ( B / A ) - 1 ) ) ) + ( 1 F ( B / A ) ) ) e. { -u _pi , _pi } ) |
43 |
40 42
|
eqeltrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( ( ( A - B ) F A ) + ( B F ( B - A ) ) ) + ( A F B ) ) e. { -u _pi , _pi } ) |