| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ang.1 |  |-  F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) | 
						
							| 2 |  | simp1l |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> A e. CC ) | 
						
							| 3 |  | 1cnd |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> 1 e. CC ) | 
						
							| 4 |  | simp2l |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> B e. CC ) | 
						
							| 5 |  | simp1r |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> A =/= 0 ) | 
						
							| 6 | 4 2 5 | divcld |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( B / A ) e. CC ) | 
						
							| 7 | 2 3 6 | subdid |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( A x. ( 1 - ( B / A ) ) ) = ( ( A x. 1 ) - ( A x. ( B / A ) ) ) ) | 
						
							| 8 | 2 | mulridd |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( A x. 1 ) = A ) | 
						
							| 9 | 4 2 5 | divcan2d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( A x. ( B / A ) ) = B ) | 
						
							| 10 | 8 9 | oveq12d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( A x. 1 ) - ( A x. ( B / A ) ) ) = ( A - B ) ) | 
						
							| 11 | 7 10 | eqtrd |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( A x. ( 1 - ( B / A ) ) ) = ( A - B ) ) | 
						
							| 12 | 11 8 | oveq12d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( A x. ( 1 - ( B / A ) ) ) F ( A x. 1 ) ) = ( ( A - B ) F A ) ) | 
						
							| 13 | 3 6 | subcld |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( 1 - ( B / A ) ) e. CC ) | 
						
							| 14 |  | simp3 |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> A =/= B ) | 
						
							| 15 | 14 | necomd |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> B =/= A ) | 
						
							| 16 | 4 2 5 15 | divne1d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( B / A ) =/= 1 ) | 
						
							| 17 | 16 | necomd |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> 1 =/= ( B / A ) ) | 
						
							| 18 | 3 6 17 | subne0d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( 1 - ( B / A ) ) =/= 0 ) | 
						
							| 19 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 20 | 19 | a1i |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> 1 =/= 0 ) | 
						
							| 21 | 1 | angcan |  |-  ( ( ( ( 1 - ( B / A ) ) e. CC /\ ( 1 - ( B / A ) ) =/= 0 ) /\ ( 1 e. CC /\ 1 =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( A x. ( 1 - ( B / A ) ) ) F ( A x. 1 ) ) = ( ( 1 - ( B / A ) ) F 1 ) ) | 
						
							| 22 | 13 18 3 20 2 5 21 | syl222anc |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( A x. ( 1 - ( B / A ) ) ) F ( A x. 1 ) ) = ( ( 1 - ( B / A ) ) F 1 ) ) | 
						
							| 23 | 12 22 | eqtr3d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( A - B ) F A ) = ( ( 1 - ( B / A ) ) F 1 ) ) | 
						
							| 24 | 2 6 3 | subdid |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( A x. ( ( B / A ) - 1 ) ) = ( ( A x. ( B / A ) ) - ( A x. 1 ) ) ) | 
						
							| 25 | 9 8 | oveq12d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( A x. ( B / A ) ) - ( A x. 1 ) ) = ( B - A ) ) | 
						
							| 26 | 24 25 | eqtrd |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( A x. ( ( B / A ) - 1 ) ) = ( B - A ) ) | 
						
							| 27 | 9 26 | oveq12d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( A x. ( B / A ) ) F ( A x. ( ( B / A ) - 1 ) ) ) = ( B F ( B - A ) ) ) | 
						
							| 28 |  | simp2r |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> B =/= 0 ) | 
						
							| 29 | 4 2 28 5 | divne0d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( B / A ) =/= 0 ) | 
						
							| 30 | 6 3 | subcld |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( B / A ) - 1 ) e. CC ) | 
						
							| 31 | 6 3 16 | subne0d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( B / A ) - 1 ) =/= 0 ) | 
						
							| 32 | 1 | angcan |  |-  ( ( ( ( B / A ) e. CC /\ ( B / A ) =/= 0 ) /\ ( ( ( B / A ) - 1 ) e. CC /\ ( ( B / A ) - 1 ) =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( A x. ( B / A ) ) F ( A x. ( ( B / A ) - 1 ) ) ) = ( ( B / A ) F ( ( B / A ) - 1 ) ) ) | 
						
							| 33 | 6 29 30 31 2 5 32 | syl222anc |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( A x. ( B / A ) ) F ( A x. ( ( B / A ) - 1 ) ) ) = ( ( B / A ) F ( ( B / A ) - 1 ) ) ) | 
						
							| 34 | 27 33 | eqtr3d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( B F ( B - A ) ) = ( ( B / A ) F ( ( B / A ) - 1 ) ) ) | 
						
							| 35 | 23 34 | oveq12d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( ( A - B ) F A ) + ( B F ( B - A ) ) ) = ( ( ( 1 - ( B / A ) ) F 1 ) + ( ( B / A ) F ( ( B / A ) - 1 ) ) ) ) | 
						
							| 36 | 8 9 | oveq12d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( A x. 1 ) F ( A x. ( B / A ) ) ) = ( A F B ) ) | 
						
							| 37 | 1 | angcan |  |-  ( ( ( 1 e. CC /\ 1 =/= 0 ) /\ ( ( B / A ) e. CC /\ ( B / A ) =/= 0 ) /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( A x. 1 ) F ( A x. ( B / A ) ) ) = ( 1 F ( B / A ) ) ) | 
						
							| 38 | 3 20 6 29 2 5 37 | syl222anc |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( A x. 1 ) F ( A x. ( B / A ) ) ) = ( 1 F ( B / A ) ) ) | 
						
							| 39 | 36 38 | eqtr3d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( A F B ) = ( 1 F ( B / A ) ) ) | 
						
							| 40 | 35 39 | oveq12d |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( ( ( A - B ) F A ) + ( B F ( B - A ) ) ) + ( A F B ) ) = ( ( ( ( 1 - ( B / A ) ) F 1 ) + ( ( B / A ) F ( ( B / A ) - 1 ) ) ) + ( 1 F ( B / A ) ) ) ) | 
						
							| 41 | 1 | ang180lem4 |  |-  ( ( ( B / A ) e. CC /\ ( B / A ) =/= 0 /\ ( B / A ) =/= 1 ) -> ( ( ( ( 1 - ( B / A ) ) F 1 ) + ( ( B / A ) F ( ( B / A ) - 1 ) ) ) + ( 1 F ( B / A ) ) ) e. { -u _pi , _pi } ) | 
						
							| 42 | 6 29 16 41 | syl3anc |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( ( ( 1 - ( B / A ) ) F 1 ) + ( ( B / A ) F ( ( B / A ) - 1 ) ) ) + ( 1 F ( B / A ) ) ) e. { -u _pi , _pi } ) | 
						
							| 43 | 40 42 | eqeltrd |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ A =/= B ) -> ( ( ( ( A - B ) F A ) + ( B F ( B - A ) ) ) + ( A F B ) ) e. { -u _pi , _pi } ) |