Step |
Hyp |
Ref |
Expression |
1 |
|
ang.1 |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
2 |
|
simp2l |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC ) |
3 |
|
simp1l |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> A e. CC ) |
4 |
|
simp3l |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) |
5 |
|
simp1r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> A =/= 0 ) |
6 |
|
simp3r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> C =/= 0 ) |
7 |
2 3 4 5 6
|
divcan5d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. B ) / ( C x. A ) ) = ( B / A ) ) |
8 |
7
|
fveq2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( log ` ( ( C x. B ) / ( C x. A ) ) ) = ( log ` ( B / A ) ) ) |
9 |
8
|
fveq2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( Im ` ( log ` ( ( C x. B ) / ( C x. A ) ) ) ) = ( Im ` ( log ` ( B / A ) ) ) ) |
10 |
4 3
|
mulcld |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( C x. A ) e. CC ) |
11 |
4 3 6 5
|
mulne0d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( C x. A ) =/= 0 ) |
12 |
4 2
|
mulcld |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( C x. B ) e. CC ) |
13 |
|
simp2r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> B =/= 0 ) |
14 |
4 2 6 13
|
mulne0d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( C x. B ) =/= 0 ) |
15 |
1
|
angval |
|- ( ( ( ( C x. A ) e. CC /\ ( C x. A ) =/= 0 ) /\ ( ( C x. B ) e. CC /\ ( C x. B ) =/= 0 ) ) -> ( ( C x. A ) F ( C x. B ) ) = ( Im ` ( log ` ( ( C x. B ) / ( C x. A ) ) ) ) ) |
16 |
10 11 12 14 15
|
syl22anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) F ( C x. B ) ) = ( Im ` ( log ` ( ( C x. B ) / ( C x. A ) ) ) ) ) |
17 |
1
|
angval |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( A F B ) = ( Im ` ( log ` ( B / A ) ) ) ) |
18 |
17
|
3adant3 |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( A F B ) = ( Im ` ( log ` ( B / A ) ) ) ) |
19 |
9 16 18
|
3eqtr4d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) F ( C x. B ) ) = ( A F B ) ) |